Metadata Manager and Experiment
Dataset Location
First Metadata Manager needs to be configured with some parameters. Next parameters are mandatory:
- dataFolderPattern: pattern that will be replaced by the values from parameters to determine the dataset location. For instance: {dataRoot}/{proposal}/{beamlineID}/{sampleName}/{scanName}
- globalHDFfiles: patterns that will be replaced by the values from parameters to determine the location where global HDF5 file will be stored. For instance: {dataRoot}/{proposal}/{beamlineID}/{proposal}-{beamlineID}.h5
- beamlineId: name of the beamline. For instance: id30a3, bm31
If a datasetParentFolder is specified will be used to determine the final dataset location otherwise the dataFolderPattern will be used:
DataFolderPattern
This flow chart explains all steps needed to store a dataset.
In the previous example the final dataset folder will be determined by the dataFolderPattern.
Specific dataset Location
It is possible to force the dataset location by using the method setDatasetParentLocation. This method receives a String as parameter with the folder of the dataset's parent.
Example:
metadataManager.setDatasetParentLocation("/data/visitor/MA1234/id01/12042018")
In this example the final dataset's folder will be /data/visitor/MA1234/id01/12042018/{scanName}
In order to implement such functionality 3 new methods have been implemented:
-
setDatasetParentLocation is optional and can be composed by: A pattern which keys will be replaced. For instance: {dataRoot}/{proposal}/Jonh/{sampleName}/20180418 An absolute path: /data/visitor/MA1234/id01/Johh/12042018
-
getDatasetParentLocation returns the value of datasetParentLocation
-
clearDatasetParentLocation sets the value of datasetParentLocation to null then dataFolderPatter will be used instead.
In both cases these folder locations point to the parent folder of the dataset
Requirements
MetadataManager has got as optional dependency graypy (https://pypi.python.org/pypi/graypy) and requests
Requests is a requirement for sending notifications to the elogbook and graypy is required to use Graylog
They can be installed:
easy_install graypy
easy_install requests
or
pip install -U graypy
pip install requests
Debian 6
Recommended solution is:
First try to use requests as supplied by debian. If you run into issues, then try to install the packages downloaded (they install a much newer version).
The module graypy can be easily installed in any case by downloading the source package (pip install or python setup.py whatever works).
Configuration
Tango
Using automatic tool to generate tango properties
There is a script that can be found in /scripts/GenerateMetaDataResource folder that generates the right starting configuration for a beamline. Usage:
Usage: GenerateMetaDataResources.py -b BL_NAME [options]
MetaData TANGO DEVICE SERVER RESOURCES GENERATOR
Options:
-h, --help show this help message and exit
-b BL_NAME, --beamline=BL_NAME
the beam line name
-m MEMBER_NAME, --member_name=MEMBER_NAME
the member part of the three part device
(domain/family/member)
-p PERSONAL_NAME, --personal_name=PERSONAL_NAME
the personal name of the Device Server
Example:
GenerateMetaDataResources.py -b id99
The use in Jive -> File/Load property file to load the generated file.
Example of generated files:
MetadataManager_ID99.tango
MetaExperiment_ID99.tango
ICAT Reader
From version > release-v1.63 MetadataManager has got a new function called CheckParameters. This function compares the list of parameters with the ICAT database and will display a message if there are parameters not support on the currect ICAT configuration.
For instance:
----------------------------------------------------
Command: id00/metadata/mgr/CheckParameters
Duration: 143 msec
Output argument(s) :
----------------------------------------------------
[ERROR] 2 parameters are unknown by ICAT. Ingestion will fail.
[Parameter] myParameters
[Parameter] myLabels
In order to configure the access from the MetadataManager to ICAT is necessary to set up some parameters in the class properties:
- AuthenticationPlugin: db
- username: reader
- password: reader
- port: 443
- server: icat.esrf.fr
ICAT+
MetadataManager can send notifications to ICAT+. For doing so, some parameters need to be added into the class properties:
OBJ_PROPERTY:API_KEY: elogbook-be70ac55-fd08-4840-9b29-b73262958ca8
OBJ_PROPERTY:icatplus_server: "http://lindemaria:8000"
Sum Up
You need to define as class parameters:
Non-Debian6
API_KEY: elogbook-be70ac55-fd08-4840-9b29-b73262958ca8
authenticationPlugin: "db"
icatplus_server: "https://icatplus.esrf.fr"
password: "reader"
port: "443"
queueName: "/queue/icatIngest"
queueURLs: bcu-mq-01.esrf.fr:61613,\
bcu-mq-02.esrf.fr:61613
server: "icat.esrf.fr"
username: "reader"
For Debian6
API_KEY: elogbook-be70ac55-fd08-4840-9b29-b73262958ca8
authenticationPlugin: "db"
icatplus_server: "https://icatplus.esrf.fr:8443"
password: "reader"
port: "443"
queueName: "/queue/icatIngest"
queueURLs: bcu-mq-01.esrf.fr:61613,\
bcu-mq-02.esrf.fr:61613
server: "icat.esrf.fr"
username: "reader"
Logging with Graylog
Graylog configuration is hardcoded in MetadataManager class. To be moved to a configuration file.
Build
Packaging
The Conda packages are build using the branch tango-metadata from our gitlab project git@gitlab.esrf.fr:bliss/conda-recipes.git.
Deploy
1.- ssh -X blissdb8 as yourself
lindemaria:~ % ssh -X demariaa@targetcompter
2.- Create suitable conda environment
targetcomputer:~ % conda create -n metadata tango-metadata which will install the package and its dependencies within that new conda environment called metadata.
Elogbook
Requirements
Go the the requirements section where dependencies are explained: Requirements
Usage
Python
Example:
#!/usr/bin/env python
"""A simple client for MetadataManager and MetaExperiment
"""
import time
import os
import sys
import logging
import PyTango.client
from time import gmtime, strftime
class MetadataManagerClient(object):
metadataManager = None
metaExperiment = None
"""
A client for the MetadataManager and MetaExperiment tango Devices
Attributes:
name: name of the tango device. Example: 'id21/metadata/ingest'
"""
def __init__(self, metadataManagerName, metaExperimentName):
"""
Return a MetadataManagerClient object whose metadataManagerName is *metadataManagerName*
and metaExperimentName is *metaExperimentName*
"""
self.proposal = None
if metadataManagerName:
self.metadataManagerName = metadataManagerName
if metaExperimentName:
self.metaExperimentName = metaExperimentName
print('MetadataManager: %s' % metadataManagerName)
print('MetaExperiment: %s' % metaExperimentName)
""" Tango Devices instances """
try:
MetadataManagerClient.metadataManager = PyTango.client.Device(self.metadataManagerName)
MetadataManagerClient.metaExperiment = PyTango.client.Device(self.metaExperimentName)
except:
print "Unexpected error:", sys.exc_info()[0]
raise
''' Set proposal should be done before stting the data root '''
def setProposal(self, proposal):
try:
MetadataManagerClient.metaExperiment.proposal = proposal
self.proposal = proposal
except:
print "Unexpected error:", sys.exc_info()[0]
raise
def notifyInfo(self, message):
MetadataManagerClient.metadataManager.notifyInfo(message)
def notifyError(self, message):
MetadataManagerClient.metadataManager.notifyError(message)
def notifyDebug(self, message):
MetadataManagerClient.metadataManager.notifyDebug(message)
if __name__ == '__main__':
metadataManagerName = 'id00/metadata/mgr'
metaExperimentName = 'id00/metadata/exp'
client = MetadataManagerClient(metadataManagerName, metaExperimentName)
client.setProposal('ID000000')
client.notifyInfo("This is a info")
client.notifyError("This is a error")
client.notifyDebug("This is debug")
Upload Base64 image
In order to upload a base64 image a new method has been implemented. Example:
MetadataManagerInstance.uploadBase64("")
Simulation
MetaExperiment and MetadataManager can be run in Simulation mode. It means that it will not try to access to the ActiveMQ server.
In order to activate the simulation mode someone just need to empty the queueURLs parameter