Newer
Older
classdef GtGrainODFuvwSolver < GtGrainODFwSolver
properties
voxel_centers = [];
rspace_oversampling = 1;
rspace_downscaling = 1;
Nicola Vigano
committed
function self = GtGrainODFuvwSolver(parameters, varargin)
self = self@GtGrainODFwSolver(parameters, varargin{:});
end
end
methods (Access = public) % Low Level API
function build_orientation_sampling(self, ref_gr, det_index)
self.build_orientation_sampling@GtGrainODFwSolver(ref_gr, det_index);
num_vox_centers = size(self.voxel_centers, 1);
recgeo = self.parameters.recgeo(self.sampler.detector_index);
switch (self.shape_functions_type)
case 'nw2uvw'
sf_nw = gtDefShapeFunctionsFwdProj(self.sampler, ...
'shape_function_type', 'nw', ...
'data_type', self.data_type);
% sf_nw = gtDefShapeFunctionsCreateNW(self.sampler, 2, ...
% 'data_type', self.data_type);
for ii_v = 1:num_vox_centers
fprintf('(%03d/%03d) ', ii_v, num_vox_centers);
disp_sampler = self.sampler.regenerate_displaced(self.voxel_centers(ii_v, :));
self.shape_functions{ii_v} = gtDefShapeFunctionsNW2UVW( ...
disp_sampler, sf_nw, 'recenter_sf', false, ...
'rspace_oversampling', self.rspace_downscaling, ...
'rspace_voxel_size', recgeo.voxsize * self.rspace_downscaling);
end
case 'uvw'
shape_functions_name = sprintf('tmp_shape_functions_uvw_%d_%d', ...
size(self.voxel_centers, 1), self.sampler.get_total_num_orientations());
if (evalin('base', ['exist(''' shape_functions_name ''', ''var'')']))
fprintf('Loading shape functions..')
c = tic();
self.shape_functions = evalin('base', shape_functions_name);
fprintf('\b\b: Done in %g seconds\n', toc(c));
elseif (~exist([shape_functions_name '.mat'], 'file'))
for ii_v = 1:num_vox_centers
fprintf('(%3d/%03d) ', ii_v, num_vox_centers);
disp_sampler = self.sampler.regenerate_displaced(self.voxel_centers(ii_v, :));
self.shape_functions{ii_v} = gtDefShapeFunctionsFwdProj( ...
disp_sampler, 'recenter_sf', false, ...
'data_type', self.data_type, ...
'rspace_voxel_size', recgeo.voxsize * self.rspace_downscaling);
end
sfs = self.shape_functions;
save([shape_functions_name '.mat'], 'sfs', '-v7.3')
assignin('base', shape_functions_name, sfs);
else
fprintf('Loading shape functions..')
c = tic();
sfs_file = load([shape_functions_name '.mat']);
self.shape_functions = sfs_file.sfs;
assignin('base', shape_functions_name, sfs_file.sfs);
fprintf('\b\b: Done in %g seconds\n', toc(c));
end
Nicola Vigano
committed
function build_sinogram(self)
if (self.verbose)
fprintf('Building sinogram..')
c = tic();
end
ref_sel = self.sampler.selected;
bls = self.sampler.ref_gr.proj(self.sampler.detector_index).bl(ref_sel);
ref_inc = self.sampler.ondet(self.sampler.included);
ref_gr = self.sampler.get_reference_grain();
Nicola Vigano
committed
ref_ws = ref_gr.allblobs(self.sampler.detector_index).detector.uvw(ref_inc(ref_sel), 3);
Nicola Vigano
committed
blob_sizes = cat(1, bls(:).bbsize);
blob_u_lims = cat(1, bls(:).bbuim);
blob_v_lims = cat(1, bls(:).bbvim);
blob_w_lims = cat(1, bls(:).bbwim);
Nicola Vigano
committed
blob_uvw_lims = permute(cat(3, blob_u_lims, blob_v_lims, blob_w_lims), [1 3 2]);
with_shape_functions = ~isempty(self.shape_functions);
% Building W information
if (with_shape_functions)
if (any(strcmpi(self.shape_functions_type, {'uvw', 'nw2uvw'})))
for ii_o = numel(self.shape_functions{1}):-1:1
proj_w_lims(:, :, ii_o) = cat(1, self.shape_functions{1}{ii_o}(:).bbwim);
end
Nicola Vigano
committed
else
for ii_o = numel(self.shape_functions):-1:1
proj_w_lims(:, :, ii_o) = cat(1, self.shape_functions{ii_o}(:).bbwim);
Nicola Vigano
committed
end
proj_w_mins = reshape(proj_w_lims(:, 1, :), num_blobs, []);
proj_w_maxs = reshape(proj_w_lims(:, 2, :), num_blobs, []);
proj_w_mins = gtGrainAnglesTabularFix360deg(proj_w_mins, ref_ws, self.parameters);
proj_w_maxs = gtGrainAnglesTabularFix360deg(proj_w_maxs, ref_ws, self.parameters);
proj_w_lims = [min(proj_w_mins, [], 2), max(proj_w_maxs, [], 2)];
delta_ws = proj_w_lims(:, 2) - proj_w_lims(:, 1) + 1;
[delta_ws, proj_w_lims] = self.sampler.get_omega_deviations(with_shape_functions);
delta_ws = delta_ws(self.sampler.selected);
proj_w_lims = proj_w_lims(self.sampler.selected, :);
num_rspace_voxels = size(self.voxel_centers, 1);
% Building UV information
if (with_shape_functions && any(strcmpi(self.shape_functions_type, {'uvw', 'nw2uvw'})))
for ii_v = num_rspace_voxels:-1:1
for ii_o = numel(self.shape_functions{1}):-1:1
proj_u_lims(:, :, ii_o, ii_v) = cat(1, self.shape_functions{ii_v}{ii_o}(:).bbuim);
proj_v_lims(:, :, ii_o, ii_v) = cat(1, self.shape_functions{ii_v}{ii_o}(:).bbvim);
end
end
% By expressing the third index with the column :, and
% not expressing the fourth at all, we do an implicit
% reshape from 4 imentions to 3
proj_u_lims = [min(proj_u_lims(:, 1, :), [], 3), max(proj_u_lims(:, 2, :), [], 3)];
proj_v_lims = [min(proj_v_lims(:, 1, :), [], 3), max(proj_v_lims(:, 2, :), [], 3)];
else
for ii_v = num_rspace_voxels:-1:1
disp_sampler = self.sampler.regenerate_displaced(self.voxel_centers(ii_v, :));
[~, proj_uv_lims(:, :, :, ii_v)] = disp_sampler.get_uv_deviations();
end
proj_uv_lims = proj_uv_lims(self.sampler.selected, :, :);
proj_u_lims = [min(proj_uv_lims(:, 1, 1, :), [], 4), max(proj_uv_lims(:, 2, 1, :), [], 4)];
proj_v_lims = [min(proj_uv_lims(:, 1, 2, :), [], 4), max(proj_uv_lims(:, 2, 2, :), [], 4)];
proj_uv_lims = cat(3, proj_u_lims, proj_v_lims);
delta_uvs = reshape(proj_uv_lims(:, 2, :) - proj_uv_lims(:, 1, :), [], 2);
chosen_sizes = max(blob_sizes, [delta_uvs, delta_ws]);
proj_uvw_lims = permute(cat(3, proj_uv_lims, proj_w_lims), [1 3 2]);
Nicola Vigano
committed
num_uvws = max(chosen_sizes, [], 1) + 2;
self.size_sino = [num_uvws, num_blobs];
self.sino = zeros(self.size_sino, self.data_type);
% In the case that the sampled orientations determine the
% shift, we have to take it into account!
align_uvw_shift = blob_uvw_lims(:, :, 1) - proj_uvw_lims(:, :, 1);
align_uvw_shift(align_uvw_shift < 0) = 0;
self.pre_paddings = floor((num_uvws(ones(num_blobs, 1), :) - chosen_sizes) / 2) + 1 + align_uvw_shift;
ints_u_interval = self.pre_paddings(ii_b, 1):(self.pre_paddings(ii_b, 1) + blob_sizes(ii_b, 1) -1);
ints_v_interval = self.pre_paddings(ii_b, 2):(self.pre_paddings(ii_b, 2) + blob_sizes(ii_b, 2) -1);
ints_w_interval = self.pre_paddings(ii_b, 3):(self.pre_paddings(ii_b, 3) + blob_sizes(ii_b, 3) -1);
masked_blob = bls(ii_b).intm;
masked_blob(~bls(ii_b).mask) = 0;
self.sino(ints_u_interval, ints_v_interval, ints_w_interval, ii_b) = masked_blob;
end
self.sino = reshape(self.sino, [], 1);
Nicola Vigano
committed
if (self.verbose)
fprintf('\b\b: Done in %g seconds.\n - Sino size: [%d, %d, %d, %d]\n', toc(c), self.size_sino);
Nicola Vigano
committed
end
function chose_voxel_centers(self)
Nicola Vigano
committed
recgeo = self.parameters.recgeo(self.sampler.detector_index);
ref_gr = self.sampler.get_reference_grain();
proj = ref_gr.proj(self.sampler.detector_index);
rspace_vol_dims = ceil([proj.vol_size_y, proj.vol_size_x, proj.vol_size_z] / self.rspace_downscaling);
Nicola Vigano
committed
max_dists_from_center = (rspace_vol_dims - 1 ./ self.rspace_oversampling) / 2;
self.size_rspace_volume = rspace_vol_dims .* self.rspace_oversampling;
tot_voxels = prod(self.size_rspace_volume);
Nicola Vigano
committed
self.voxel_centers = zeros(tot_voxels, 3);
Nicola Vigano
committed
counter = 1;
for ss_z = linspace(-max_dists_from_center(3), max_dists_from_center(3), self.size_rspace_volume(3))
for ss_y = linspace(-max_dists_from_center(2), max_dists_from_center(2), self.size_rspace_volume(2))
for ss_x = linspace(-max_dists_from_center(1), max_dists_from_center(1), self.size_rspace_volume(1))
offset_voxel = [ss_x, ss_y, ss_z] .* recgeo.voxsize * self.rspace_downscaling;
Nicola Vigano
committed
self.voxel_centers(counter, :) = ref_gr.center + offset_voxel;
Nicola Vigano
committed
counter = counter + 1;
end
end
end
function build_projection_matrices_sf_none(self)
ref_sel = self.sampler.selected;
det_ind = self.sampler.detector_index;
detgeo = self.parameters.detgeo(det_ind);
labgeo = self.parameters.labgeo;
samgeo = self.parameters.samgeo;
om_step = gtAcqGetOmegaStep(self.parameters, det_ind);
bls = self.sampler.ref_gr.proj(det_ind).bl(ref_sel);
num_uvws = self.get_num_uvws();
num_blobs = self.get_num_blobs();
bls_bbus = cat(1, bls(:).bbuim);
bls_bbvs = cat(1, bls(:).bbvim);
bls_bbws = cat(1, bls(:).bbwim);
min_uvw_conds = [bls_bbus(:, 1), bls_bbvs(:, 1), bls_bbws(:, 1)] - self.pre_paddings + 1;
max_uvw_conds = min_uvw_conds + num_uvws(ones(num_blobs, 1), :) - 1;
Nicola Vigano
committed
grid_gr = self.sampler.get_orientations();
num_orients = numel(grid_gr);
num_voxels = size(self.voxel_centers, 1);
self.S = cell(num_voxels, 1);
self.St = cell(num_voxels, 1);
rot_l2s = cell(num_orients, 1);
for ii_o = 1:num_orients
Nicola Vigano
committed
rot_l2s{ii_o} = grid_gr{ii_o}.allblobs(det_ind).srot(:, :, ref_sel);
Nicola Vigano
committed
end
rot_l2s = cat(3, rot_l2s{:});
rot_s2l = permute(rot_l2s, [2 1 3]);
Nicola Vigano
committed
dveclab = cell(num_orients, 1);
for ii_o = 1:num_orients
Nicola Vigano
committed
dveclab{ii_o} = grid_gr{ii_o}.allblobs(det_ind).dvec(ref_sel, :);
end
dveclab = cat(1, dveclab{:});
Nicola Vigano
committed
for ii_v = 1:num_voxels
b_us = [];
b_vs = [];
b_ws = [];
b_cs = [];
b_is = [];
b_os = [];
num_chars = fprintf('%03d/%03d', ii_v, num_voxels);
gcsam_v = self.voxel_centers(ii_v, :);
gcsam_v = gcsam_v(ones(1, size(rot_s2l, 3)), :);
gclab_v = gtGeoSam2Lab(gcsam_v, rot_s2l, labgeo, samgeo, false);
uv_tot = gtFedPredictUVMultiple([], dveclab', gclab_v', ...
detgeo.detrefpos', detgeo.detnorm', detgeo.Qdet, ...
[detgeo.detrefu, detgeo.detrefv]');
uv_tot = reshape(uv_tot, 2, [], num_orients);
Nicola Vigano
committed
for ii_o = 1:num_orients
% W part
Nicola Vigano
committed
ws = grid_gr{ii_o}.allblobs(det_ind).omega(ref_sel) / om_step;
Nicola Vigano
committed
% UV part
uvw = [uv_tot(:, :, ii_o)', ws];
num_pos = size(uvw, 1);
min_uvws = floor(uvw);
max_uvws = min_uvws + 1;
max_uvw_cs = uvw - min_uvws;
min_uvw_cs = 1 - max_uvw_cs;
Nicola Vigano
committed
% Acceptance criteria
ok_uvw_mins = (min_uvws >= min_uvw_conds) & (min_uvws <= max_uvw_conds);
ok_uvw_maxs = (max_uvws >= min_uvw_conds) & (max_uvws <= max_uvw_conds) & (max_uvw_cs > eps('single'));
u_oks = [ok_uvw_mins(:, 1), ok_uvw_maxs(:, 1)];
v_oks = [ok_uvw_mins(:, 2), ok_uvw_maxs(:, 2)];
w_oks = [ok_uvw_mins(:, 3), ok_uvw_maxs(:, 3)];
u_cs = [min_uvw_cs(:, 1), max_uvw_cs(:, 1)];
v_cs = [min_uvw_cs(:, 2), max_uvw_cs(:, 2)];
w_cs = [min_uvw_cs(:, 3), max_uvw_cs(:, 3)];
pos_us = [min_uvws(:, 1), max_uvws(:, 1)] - bls_bbus(:, [1 1]) + self.pre_paddings(:, [1 1]);
pos_vs = [min_uvws(:, 2), max_uvws(:, 2)] - bls_bbvs(:, [1 1]) + self.pre_paddings(:, [2 2]);
pos_ws = [min_uvws(:, 3), max_uvws(:, 3)] - bls_bbws(:, [1 1]) + self.pre_paddings(:, [3 3]);
Nicola Vigano
committed
uvw_oks = u_oks(:, [1 1 1 1 2 2 2 2]) & v_oks(:, [1 1 2 2 1 1 2 2]) & w_oks(:, [1 2 1 2 1 2 1 2]);
uvw_cs = u_cs(:, [1 1 1 1 2 2 2 2]) .* v_cs(:, [1 1 2 2 1 1 2 2]) .* w_cs(:, [1 2 1 2 1 2 1 2]);
Nicola Vigano
committed
pos_us = pos_us(:, [1 1 1 1 2 2 2 2]);
pos_vs = pos_vs(:, [1 1 2 2 1 1 2 2]);
pos_ws = pos_ws(:, [1 2 1 2 1 2 1 2]);
Nicola Vigano
committed
indx = find(uvw_oks);
indx_mod = mod(indx - 1, num_pos) + 1;
b_us = [b_us; pos_us(indx)];
b_vs = [b_vs; pos_vs(indx)];
b_ws = [b_ws; pos_ws(indx)];
b_cs = [b_cs; uvw_cs(indx)];
b_is = [b_is; indx_mod];
b_os = [b_os; ii_o(ones(numel(indx), 1))];
% sino_indx = sub2ind(self.size_sino, b_us, b_vs, b_ws, b_is);
sino_indx = b_us ...
+ num_uvws(1) * (b_vs - 1 ...
+ num_uvws(2) * (b_ws - 1 ...
+ num_uvws(3) * (b_is - 1)));
Nicola Vigano
committed
self.S{ii_v} = sparse( ...
sino_indx, b_os, b_cs, ...
numel(self.sino), num_orients);
Nicola Vigano
committed
self.St{ii_v} = self.S{ii_v}';
fprintf(repmat('\b', [1 num_chars]));
end
end
function build_projection_matrices_sf_w(self)
ref_sel = self.sampler.selected;
det_ind = self.sampler.detector_index;
detgeo = self.parameters.detgeo(det_ind);
labgeo = self.parameters.labgeo;
samgeo = self.parameters.samgeo;
bls = self.sampler.ref_gr.proj(self.sampler.detector_index).bl(ref_sel);
num_uvws = self.get_num_uvws();
num_blobs = self.get_num_blobs();
bls_bbus = cat(1, bls(:).bbuim);
bls_bbvs = cat(1, bls(:).bbvim);
min_uvw_conds = [bls_bbus(:, 1), bls_bbvs(:, 1), bls_bbws(:, 1)] - self.pre_paddings + 1;
max_uvw_conds = min_uvw_conds + num_uvws(ones(num_blobs, 1), :) - 1;
grid_gr = self.sampler.get_orientations();
num_orients = numel(grid_gr);
num_voxels = size(self.voxel_centers, 1);
self.S = cell(num_voxels, 1);
self.St = cell(num_voxels, 1);
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
% Extracting orientations' W shape functions
oris_w_cs = cell(num_orients, 1);
oris_ws = cell(num_orients, 1);
oris_w_is = cell(num_orients, 1);
for ii_o = 1:num_orients
sf = self.shape_functions{ii_o};
w_cs = cat(1, sf(:).intm);
oris_w_cs{ii_o} = reshape(w_cs, [], 1);
ws_sizes = [sf(:).bbsize];
bbwims = cat(1, sf(:).bbwim);
ws = cell(num_blobs, 1);
w_is = cell(num_blobs, 1);
for ii_b = 1:num_blobs
ws{ii_b} = bbwims(ii_b, 1):bbwims(ii_b, 2);
w_is{ii_b} = ii_b(ones(ws_sizes(ii_b), 1));
end
oris_ws{ii_o} = reshape([ws{:}], [], 1);
oris_w_is{ii_o} = cat(1, w_is{:});
end
% Preparing for computing the UV deviations due to the XYZ
% positions of the real-space voxels
rot_l2s = cell(num_orients, 1);
for ii_o = 1:num_orients
Nicola Vigano
committed
rot_l2s{ii_o} = grid_gr{ii_o}.allblobs(det_ind).srot(:, :, ref_sel);
rot_l2s = cat(3, rot_l2s{:});
rot_s2l = permute(rot_l2s, [2 1 3]);
dveclab = cell(num_orients, 1);
for ii_o = 1:num_orients
Nicola Vigano
committed
dveclab{ii_o} = grid_gr{ii_o}.allblobs(det_ind).dvec(ref_sel, :);
end
dveclab = cat(1, dveclab{:});
for ii_v = 1:num_voxels
b_us = [];
b_vs = [];
b_ws = [];
b_cs = [];
b_is = [];
b_os = [];
num_chars = fprintf('%03d/%03d', ii_v, num_voxels);
gcsam_v = self.voxel_centers(ii_v, :);
gcsam_v = gcsam_v(ones(1, size(rot_s2l, 3)), :);
gclab_v = gtGeoSam2Lab(gcsam_v, rot_s2l, labgeo, samgeo, false);
uv_tot = gtFedPredictUVMultiple([], dveclab', gclab_v', ...
detgeo.detrefpos', detgeo.detnorm', detgeo.Qdet, ...
[detgeo.detrefu, detgeo.detrefv]');
uv_tot = reshape(uv_tot, 2, [], num_orients);
w_cs = oris_w_cs{ii_o};
ws = oris_ws{ii_o};
w_is = oris_w_is{ii_o};
uv = uv_tot(:, :, ii_o)';
min_uvs = floor(uv);
max_uvs = min_uvs + 1;
max_uv_cs = uv - min_uvs;
min_uv_cs = 1 - max_uv_cs;
% Acceptance criteria
ok_uv_mins = (min_uvs >= min_uvw_conds(:, 1:2)) & (min_uvs <= max_uvw_conds(:, 1:2)) & (min_uv_cs > eps('single'));
ok_uv_maxs = (max_uvs >= min_uvw_conds(:, 1:2)) & (max_uvs <= max_uvw_conds(:, 1:2)) & (max_uv_cs > eps('single'));
u_oks = [ok_uv_mins(:, 1), ok_uv_maxs(:, 1)];
v_oks = [ok_uv_mins(:, 2), ok_uv_maxs(:, 2)];
u_cs = [min_uv_cs(:, 1), max_uv_cs(:, 1)];
v_cs = [min_uv_cs(:, 2), max_uv_cs(:, 2)];
pos_us = [(min_uvs(:, 1) - min_uvw_conds(:, 1) + 1), (max_uvs(:, 1) - min_uvw_conds(:, 1) + 1)];
pos_vs = [(min_uvs(:, 2) - min_uvw_conds(:, 2) + 1), (max_uvs(:, 2) - min_uvw_conds(:, 2) + 1)];
pos_ws = ws - min_uvw_conds(w_is, 3) + 1;
uvw_oks = u_oks(w_is, [1 1 2 2]) & v_oks(w_is, [1 2 1 2]);
uvw_cs = u_cs(w_is, [1 1 2 2]) .* v_cs(w_is, [1 2 1 2]) .* w_cs(:, [1 1 1 1]);
pos_us = pos_us(w_is, [1 1 2 2]);
pos_vs = pos_vs(w_is, [1 2 1 2]);
pos_ws = pos_ws(:, [1 1 1 1]);
indx = find(uvw_oks);
indx_mod = mod(indx - 1, numel(w_is)) + 1;
wrong_w = ws < min_uvw_conds(w_is, 3) | ws > max_uvw_conds(w_is, 3);
if (any(wrong_w))
ii_o
find(wrong_w)
[min_uvw_conds(w_is(wrong_w), 3), ws(wrong_w), max_uvw_conds(w_is(wrong_w), 3), ...
(max_uvw_conds(w_is(wrong_w), 3) - min_uvw_conds(w_is(wrong_w), 3) + 1), ...
(ws(wrong_w) - min_uvw_conds(w_is(wrong_w), 3) + 1) ]
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
end
b_us = [b_us; pos_us(indx)];
b_vs = [b_vs; pos_vs(indx)];
b_ws = [b_ws; pos_ws(indx)];
b_cs = [b_cs; uvw_cs(indx)];
b_is = [b_is; w_is(indx_mod)];
b_os = [b_os; ii_o(ones(numel(indx), 1))];
end
% sino_indx = sub2ind(self.size_sino, b_us, b_vs, b_ws, b_is);
sino_indx = b_us ...
+ self.size_sino(1) * (b_vs - 1 ...
+ self.size_sino(2) * (b_ws - 1 ...
+ self.size_sino(3) * (b_is - 1)));
self.S{ii_v} = sparse( ...
sino_indx, b_os, b_cs, ...
numel(self.sino), num_orients);
self.St{ii_v} = self.S{ii_v}';
fprintf(repmat('\b', [1 num_chars]));
end
Nicola Vigano
committed
end
function build_projection_matrices_sf_uvw(self)
ref_sel = self.sampler.selected;
bls = self.sampler.ref_gr.proj(self.sampler.detector_index).bl(ref_sel);
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
num_blobs = self.get_num_blobs();
num_ws = self.get_num_ws();
bls_bbws = cat(1, bls(:).bbwim);
min_w_conds = bls_bbws(:, 1) - self.pre_paddings(:, 3) + 1;
max_w_conds = min_w_conds + num_ws - 1;
bls_bbus = cat(1, bls(:).bbuim);
bls_bbvs = cat(1, bls(:).bbvim);
grid_gr = self.sampler.get_orientations();
num_orients = numel(grid_gr);
num_voxels = size(self.voxel_centers, 1);
self.S = cell(num_voxels, 1);
self.St = cell(num_voxels, 1);
bls_uvw_orig = cat(1, bls(:).bbuim, bls(:).bbvim, bls(:).bbwim);
bls_uvw_orig = reshape(bls_uvw_orig, [], 3, 2);
bls_uvw_orig = bls_uvw_orig(:, :, 1) - self.pre_paddings + 1;
for ii_v = 1:num_voxels
b_us = [];
b_vs = [];
b_ws = [];
b_cs = [];
b_is = [];
b_os = [];
num_chars = fprintf('%03d/%03d', ii_v, num_voxels);
for ii_o = 1:num_orients
sf = self.shape_functions{ii_v}{ii_o};
sf_uvw_shift = cat(1, sf(:).bbuim, sf(:).bbvim, sf(:).bbwim);
sf_uvw_shift = reshape(sf_uvw_shift, [], 3, 2);
sf_uvw_shift = sf_uvw_shift(:, :, 1) - bls_uvw_orig;
uvw_cs = cell(num_blobs, 1);
bl_is = cell(num_blobs, 1);
bl_shifts = cell(num_blobs, 1);
for ii_b = 1:num_blobs
inds = find(sf(ii_b).intm);
uvw_cs{ii_b} = sf(ii_b).intm(inds);
% [inds_u, inds_v, inds_w] = ind2sub(sf(ii_b).bbsize, inds);
inds_u = mod(inds, sf(ii_b).bbsize(1));
inds_v = mod(floor(inds / sf(ii_b).bbsize(1)) + 1, sf(ii_b).bbsize(2));
inds_w = floor(inds / prod(sf(ii_b).bbsize(1:2))) + 1;
bl_is{ii_b} = ii_b(ones(numel(inds), 1));
bl_shifts{ii_b} = [inds_u, inds_v, inds_w] + sf_uvw_shift(bl_is{ii_b}, :);
end
uvw_cs = cat(1, uvw_cs{:});
bl_is = cat(1, bl_is{:});
bl_shifts = cat(1, bl_shifts{:});
b_us = [b_us; bl_shifts(:, 1)];
b_vs = [b_vs; bl_shifts(:, 2)];
b_ws = [b_ws; bl_shifts(:, 3)];
b_cs = [b_cs; uvw_cs];
b_is = [b_is; bl_is];
b_os = [b_os; ii_o(ones(numel(bl_is), 1))];
end
% sino_indx = sub2ind(self.size_sino, b_us, b_vs, b_ws, b_is);
sino_indx = b_us ...
+ self.size_sino(1) * (b_vs - 1 ...
+ self.size_sino(2) * (b_ws - 1 ...
+ self.size_sino(3) * (b_is - 1)));
self.S{ii_v} = sparse( ...
sino_indx, b_os, double(b_cs), ...
numel(self.sino), num_orients);
self.St{ii_v} = self.S{ii_v}';
fprintf(repmat('\b', [1 num_chars]));
end
end
Nicola Vigano
committed
function vol = get_volume(self)
vol = reshape(sum(self.volume, 2), self.size_volume);
function vol = get_volume_6D(self)
vol = reshape(self.volume, [self.size_volume, self.size_rspace_volume]);
end
Nicola Vigano
committed
function y = fp(self, x)
y = self.S{1} * x(:, 1);
for ii_s = 2:numel(self.S)
y = y + self.S{ii_s} * x(:, ii_s);
end
end
function y = bp(self, x)
for ii_s = numel(self.St):-1:1
y(:, ii_s) = self.St{ii_s} * x;
end
end
function num_uvws = get_num_uvws(self)
num_uvws = self.size_sino(1:3);
end
function num_ws = get_num_ws(self)
num_ws = self.size_sino(3);
end
function num_bs = get_num_blobs(self)
num_bs = self.size_sino(4);
end