Newer
Older
Laura Nervo
committed
function [dsp,theta] = gtCalculateDist(hkl,cryst,energy)
Peter Reischig
committed
Laura Nervo
committed
% GTCALCULATEDIST Calculates d-spacing and the Bragg angle for a given hkl
% [dsp,theta] = gtCalculateDist(hkl,cryst,energy)
% -----------------------------------------------
Laura Nervo
committed
% hkl = row vector of Miller indices;
% size 1x3 or 1x4 for hexagonal
% cryst.latticepar = lattice parameters
% cryst.spacegroup = spacegroup
% cryst.hermann_mauguin = Hermann-Mauguin symbol
% energy = beam energy in keV
%
Laura Nervo
committed
% dsp = d-spacing of the specified hkl family
% theta = the Bragg angle of the specified hkl family
%
%
% Version 006 10-12-2012 by LNervo
% Changed output from twotheta to theta
%
% Version 005 14-05-2012 by LNervo
% Remove crystal_system calculation
%
Peter Reischig
committed
% Version 004 14-03-2012 by PReischig
Peter Reischig
committed
%
% Version 003 08-03-2012 by PReischig
% Seperated 'parameters' input into 'cryst' and 'energy'.
% Bug fix: definition of variable 'hermann'.
%
% Version 002 29-11-2011 by LNervo
% hkl <double 1x3> row vector!
% parameters = parameters file
%
%
if ~exist('hkl','var') || isempty(hkl)
hkl = input('Insert the Miller indexes as row vector: ');
end
if ~exist('energy','var') || isempty(energy)
energy = input('Insert the beam energy in keV: ');
latticepar = cryst.latticepar;
spacegroup = cryst.spacegroup;
hermann = cryst.hermann_mauguin;
lambda = gtConvEnergyToWavelength(energy);
Peter Reischig
committed
hkl = double(hkl);
Peter Reischig
committed
% Lattice parameters
a = latticepar(1);
b = latticepar(2);
c = latticepar(3);
alpha = latticepar(4);
beta = latticepar(5);
gamma = latticepar(6);
if size(hkl,2)==4 % hexagonal materials
h = hkl(1);
k = hkl(2);
l = hkl(4);
Peter Reischig
committed
h = hkl(1);
k = hkl(2);
l = hkl(3);
Peter Reischig
committed
% Spacegroups
if between(spacegroup,1,2) % crystal_system = 'triclinic'; % a ~= b ~= c; alpha ~= beta ~= gamma ~= 90
Peter Reischig
committed
Y = h^2/a^2*(sind(alpha))^2 + k^2/b^2*(sind(beta))^2 + l^2/c^2*(sind(gamma))^2;
Z = 2*k*l/b/c*(cosd(beta) *cosd(gamma) - cosd(alpha)) + ...
2*l*h/c/a*(cosd(gamma)*cosd(alpha) - cosd(beta)) + ...
2*h*k/a/b*(cosd(alpha)*cosd(beta) - cosd(gamma)) ;
invdsp2 = 1/(1 - (cosd(alpha))^2 - (cosd(beta))^2 - (cosd(gamma))^2 + ...
2*cosd(alpha)*cosd(beta)*cosd(gamma))*(Y+Z);
Peter Reischig
committed
if between(spacegroup,3,15) % crystal_system = 'monoclinic'; % a ~= b ~= c; alpha = gamma = 90 ~= beta
Peter Reischig
committed
invdsp2 = h^2/(a*sind(beta))^2 + k^2/b^2 + l^2/(c*sind(beta))^2 - ...
(2*h*l*cosd(beta)) / (a*c*(sind(beta))^2);
Peter Reischig
committed
if between(spacegroup,16,74) % crystal_system = 'orthorhombic'; % a ~= b ~= c; alpha = beta = gamma = 90
Peter Reischig
committed
invdsp2 = h^2/a^2 + k^2/b^2 + l^2/c^2;
Peter Reischig
committed
if between(spacegroup,75,142) % crystal_system = 'tetragonal'; % a = b ~= c; alpha = beta = gamma = 90
Peter Reischig
committed
Peter Reischig
committed
if between(spacegroup,143,167) % crystal_system = 'trigonal';
Peter Reischig
committed
if ~isempty(strfind(hermann,'P')) % hexagonal lattice_system
% a1 = a2 = a3 ~= c; alpha = beta = 90; gamma = 120
Peter Reischig
committed
invdsp2 = 4/(3*a^2) * (h^2 + k^2 + h*k) + l^2/c^2;
elseif ~isempty(strfind(hermann,'R')) % rhombohedral lattice_system
% a = b = c; alpha = beta = gamma ~= 90
Peter Reischig
committed
Y1 = h^2 + k^2 + h*k;
Y2 = 2*(h*k + h*l + k*l);
Z1 = (sind(alpha))^2;
Z2 = (cosd(alpha))^2 - cosd(alpha);
W = 1 + 2*(cosd(alpha))^3 - 3*(cosd(alpha))^2;
invdsp2 = 1/a^2*(Y1*Z1 + Y2*Z2)/W;
Peter Reischig
committed
if between(spacegroup,168,194) || spacegroup==663 % crystal_system = 'hexagonal'; % a1 = a2 = a3 ~= c; alpha = beta = 90; gamma = 120
Peter Reischig
committed
invdsp2 = 4/(3*a^2)*(h^2 + k^2 + h*k) + l^2/c^2;
Peter Reischig
committed
if between(spacegroup,195,230) % crystal_system = 'cubic'; % a = b = c; alpha = beta = gamma = 90
Peter Reischig
committed
invdsp2 = (h^2+k^2+l^2)/a^2;
Peter Reischig
committed
% d-spacing
dsp = 1/(invdsp2)^0.5;
Laura Nervo
committed
% theta from the Bragg's law
theta = asind(lambda/(2*dsp));
Peter Reischig
committed
end % end of function