Newer
Older
function post_result = gt6DPostProcessOrientationSpread(test_data, result, disable_gtdisorientation)
if (~exist('disable_gtdisorientation', 'var'))
end
c = tic();
fprintf('Cropping volume..')
rec_size = [size(result.solution{1}, 1), size(result.solution{1}, 2), size(result.solution{1}, 3)];
result_size = [size(result.expected_dmvol, 1), size(result.expected_dmvol, 2), size(result.expected_dmvol, 3)];
lims = floor((rec_size - result_size) / 2) + 1;
lims = [lims, (lims + result_size - 1)];
post_result.recon = cell(size(result.solution));
for ii = 1:numel(post_result.recon)
post_result.recon{ii} = result.solution{ii}(lims(1):lims(4), lims(2):lims(5), lims(3):lims(6));
end
fprintf('\b\b (%f s), computing Average R-Vectors..', toc(c))
c = tic();
post_result.avg_orientations = getAverageOrientations(result.grains, post_result.recon, result_size);
fprintf('\b\b (%f s), merging Theoretical Deviations..', toc(c))
c = tic();
post_result.domains_theo = mergeBlockTheoDeviations(result);
fprintf('\b\b (%f s), merging Reconstructed Deviations..', toc(c))
c = tic();
post_result.domains_recon = mergeBlockReconstructions(test_data, result, post_result.recon);
fprintf('\b\b (%f s), finding component-wise error Distance (quick)..', toc(c))
c = tic();
post_result.distance_comp_deg = 2*atand(getComponentsDistances(result, post_result.recon));
fprintf('\b\b (%f s), finding error Distance (quick)..', toc(c))
c = tic();
post_result.distance_deg_alt = 2*atand(getDistance(result, post_result.recon));
fprintf('\b\b (%f s), finding error Distance (exact)..', toc(c))
c = tic();
if (~disable_gtdisorientation)
post_result.distance_deg = getDisorientation(test_data, result, post_result.recon);
end
fprintf('\b\b (%f s), Done.\n', toc(c))
end
function merged = mergeDeviations(deviations, isResult)
merged = zeros(size(deviations{1}));
if (isResult)
values = zeros(size(merged));
else
values = ones(size(merged));
end
for ii = 1:numel(deviations)
if (isResult)
indx = deviations{ii} > values;
else
indx = deviations{ii} < values;
end
values(indx) = deviations{ii}(indx);
merged(indx) = ii;
end
end
function merged = mergeBlockTheoDeviations(result)
orientations = gtDefDmvol2Gvdm(result.expected_dmvol)';
tiles = tileOrientations(orientations, 5);
final_vol_size = size(result.expected_dmvol(:, :, :, 1));
deviations = getDeviations(orientations, tiles, final_vol_size);
merged = mergeDeviations(deviations, false);
end
function merged = mergeBlockReconstructions(testData, result, recon)
orientations = testData.gv.dm';
finalVolSize = size(result.expected_dmvol(:, :, :, 1));
tiles = tileOrientations(orientations, 5);
reconRvals = getAverageOrientations(result.grains, recon, finalVolSize);
deviations = getDeviations(reconRvals, tiles, finalVolSize);
merged = mergeDeviations(deviations, false);
end
function distance = getDistance(result, recon)
finalVolSize = size(result.expected_dmvol(:, :, :, 1));
reconRvals = getAverageOrientations(result.grains, recon, finalVolSize);
theoRvals = gtDefDmvol2Gvdm(result.expected_dmvol);
distance = theoRvals - reconRvals';
distance = sqrt(sum(distance .^ 2, 1));
distance = reshape(distance, finalVolSize);
end
function distances = getComponentsDistances(result, recon)
finalVolSize = size(result.expected_dmvol(:, :, :, 1));
reconRvals = getAverageOrientations(result.grains, recon, finalVolSize);
theoRvals = gtDefDmvol2Gvdm(result.expected_dmvol);
distances = permute(abs(theoRvals - reconRvals'), [2 3 4 1]);
distances = reshape(distances, [finalVolSize 3]);
end
function distance = getDisorientation(test_data, result, recon)
finalVolSize = size(result.expected_dmvol(:, :, :, 1));
reconRvals = getAverageOrientations(result.grains, recon, finalVolSize)';
% reconRvals = getMaxOrientations(grains, recon, finalVolSize)';
theoRvals = gtDefDmvol2Gvdm(result.expected_dmvol);
cryst = test_data.parameters.cryst;
symm = gtCrystGetSymmetryOperators(cryst.crystal_system, cryst.spacegroup);
fprintf('\b\b: ')
num_vecs = size(theoRvals, 2);
g_theo = gtMathsRod2OriMat(theoRvals);
g_recon = gtMathsRod2OriMat(reconRvals);
for ii = num_vecs:-1:1
if (mod(ii, 100) == 0)
num_chars = fprintf('%4d/%04d', ii, num_vecs);
end
distance(ii) = gtDisorientation(g_theo(:, :, ii), g_recon(:, :, ii), symm, 'input', 'orimat', 'mode', 'passive');
if (mod(ii, 100) == 0)
fprintf(repmat('\b', [1 num_chars]));
end
end
distance = reshape(distance, finalVolSize);
end
function tiles = tileOrientations(orientations, numTilesEdge)
extremes = [min(orientations, [], 1), max(orientations, [], 1)];
tilesX = linspace(extremes(1), extremes(4), numTilesEdge);
tilesY = linspace(extremes(2), extremes(5), numTilesEdge);
tilesZ = linspace(extremes(3), extremes(6), numTilesEdge);
Nicola Vigano
committed
[tilesX, tilesY, tilesZ] = ndgrid(tilesX, tilesY, tilesZ);
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
tiles = [tilesX(:), tilesY(:), tilesZ(:)];
end
function deviation = getDeviations(orientations, tiles, volSize)
deviation = cell(size(tiles, 1), 1);
for ii = 1:numel(deviation)
ddm = orientations - repmat(tiles(ii, :), [size(orientations, 1), 1]);
ddm = sqrt(sum((ddm .^ 2), 2));
deviation{ii} = reshape(ddm, volSize);
end
end
function reconRvals = getMaxOrientations(gr, recon, finalVolSize)
reconRvals = zeros([3, finalVolSize]);
mergedVols = mergeDeviations(recon, true);
mergedVols = reshape(mergedVols, [1, finalVolSize]);
mergedVols = repmat(mergedVols, [3, 1, 1, 1]);
for ii = 1:numel(recon)
indices = mergedVols == ii;
num_reps = sum(sum(sum(indices))) / 3;
reconRvals(indices) = repmat(gr{ii}.R_vector', [num_reps, 1]);
end
reconRvals = reshape(reconRvals, [3, prod(finalVolSize)])';
end
function [avg_R_vecs, avg_R_vecs_int] = getAverageOrientations(gr, recon_vols, final_vol_size)
avg_R_vecs = zeros([3, final_vol_size]);
avg_R_vecs_int = zeros([3, final_vol_size]);
for ii = 1:numel(recon_vols)
weights = reshape(recon_vols{ii}, [1, final_vol_size]);
weights = repmat(weights, [3, 1, 1, 1]);
avg_R_vecs_int = avg_R_vecs_int + weights;
avg_R_vecs = avg_R_vecs + weights .* ...
repmat(gr{ii}.R_vector', [1, final_vol_size]);
end
avg_R_vecs = avg_R_vecs ./ (avg_R_vecs_int + (avg_R_vecs_int == 0));
avg_R_vecs = reshape(avg_R_vecs, [3, prod(final_vol_size)])';
end