Newer
Older
function post_result = gt6DPostProcessOrientationSpread(test_data, result, disable_gtdisorientation)
if (~exist('disable_gtdisorientation', 'var'))
end
c = tic();
fprintf('Cropping volume..')
bigSize = [size(result.solution{1}, 1), size(result.solution{1}, 2), size(result.solution{1}, 3)];
finalSize = [size(result.deviation{1}, 1), size(result.deviation{1}, 2), size(result.deviation{1}, 3)];
lims = round((bigSize - finalSize) /2) + 1;
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
lims = [lims, (lims + finalSize - 1)];
post_result.recon = cellfun(@(x){x(lims(1):lims(4), lims(2):lims(5), lims(3):lims(6))}, result.solution);
fprintf('\b\b (%f s), computing Average R-Vectors..', toc(c))
c = tic();
post_result.avg_orientations = getAverageOrientations(result.grains, post_result.recon, size(test_data.dmvol(:, :, :, 1)));
fprintf('\b\b (%f s), merging Theoretical Deviations..', toc(c))
c = tic();
post_result.domains_theo = mergeBlockTheoDeviations(test_data);
fprintf('\b\b (%f s), merging Reconstructed Deviations..', toc(c))
c = tic();
post_result.domains_recon = mergeBlockReconstructions(test_data, result.grains, post_result.recon);
fprintf('\b\b (%f s), finding component-wise error Distance (quick)..', toc(c))
c = tic();
post_result.distance_comp_deg = 2*atand(getComponentsDistances(test_data, result.grains, post_result.recon));
fprintf('\b\b (%f s), finding error Distance (quick)..', toc(c))
c = tic();
post_result.distance_deg_alt = 2*atand(getDistance(test_data, result.grains, post_result.recon));
fprintf('\b\b (%f s), finding error Distance (exact)..', toc(c))
c = tic();
if (~disable_gtdisorientation)
post_result.distance_deg = getDisorientation(test_data, result.grains, post_result.recon);
end
fprintf('\b\b (%f s), Done.\n', toc(c))
% And then things like:
% [ post_result.distance ] = gtCSGetOrientationDistance( recon, testData );
end
function merged = mergeDeviations(deviations, isResult)
merged = zeros(size(deviations{1}));
if (isResult)
values = zeros(size(merged));
else
values = ones(size(merged));
end
for ii = 1:numel(deviations)
if (isResult)
indx = deviations{ii} > values;
else
indx = deviations{ii} < values;
end
values(indx) = deviations{ii}(indx);
merged(indx) = ii;
end
end
function merged = mergeBlockTheoDeviations(testData)
orientations = testData.gv.dm';
finalVolSize = size(testData.dmvol(:, :, :, 1));
tiles = tileOrientations(orientations, 5);
deviations = getDeviations(orientations, tiles, finalVolSize);
merged = mergeDeviations(deviations, false);
end
function merged = mergeBlockReconstructions(testData, grains, recon)
orientations = testData.gv.dm';
finalVolSize = size(testData.dmvol(:, :, :, 1));
tiles = tileOrientations(orientations, 5);
reconRvals = getAverageOrientations(grains, recon, finalVolSize);
deviations = getDeviations(reconRvals, tiles, finalVolSize);
merged = mergeDeviations(deviations, false);
end
function distance = getDistance(testData, grains, recon)
finalVolSize = size(testData.dmvol(:, :, :, 1));
reconRvals = getAverageOrientations(grains, recon, finalVolSize);
theoRvals = testData.gv.dm;
distance = theoRvals - reconRvals';
distance = sqrt(sum(distance .^ 2, 1));
distance = reshape(distance, finalVolSize);
end
function distances = getComponentsDistances(testData, grains, recon)
finalVolSize = size(testData.dmvol(:, :, :, 1));
reconRvals = getAverageOrientations(grains, recon, finalVolSize);
theoRvals = testData.gv.dm;
distances = permute(abs(theoRvals - reconRvals'), [2 3 4 1]);
distances = reshape(distances, [finalVolSize 3]);
end
function distance = getDisorientation(testData, grains, recon)
finalVolSize = size(testData.dmvol(:, :, :, 1));
reconRvals = getAverageOrientations(grains, recon, finalVolSize)';
% reconRvals = getMaxOrientations(grains, recon, finalVolSize)';
theoRvals = testData.gv.dm;
symm = gtCrystGetSymmetryOperators('cubic');
fprintf('\b\b: ')
num_vecs = size(theoRvals, 2);
g_theo = gtMathsRod2OriMat(theoRvals);
g_recon = gtMathsRod2OriMat(reconRvals);
for ii = num_vecs:-1:1
if (mod(ii, 100) == 0)
num_chars = fprintf('%4d/%04d', ii, num_vecs);
end
distance(ii) = gtDisorientation(g_theo(:, :, ii), g_recon(:, :, ii), symm, 'input', 'orimat', 'mode', 'active');
if (mod(ii, 100) == 0)
fprintf(repmat('\b', [1 num_chars]));
end
end
distance = reshape(distance, finalVolSize);
end
function tiles = tileOrientations(orientations, numTilesEdge)
extremes = [min(orientations, [], 1), max(orientations, [], 1)];
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
tilesX = linspace(extremes(1), extremes(4), numTilesEdge);
tilesY = linspace(extremes(2), extremes(5), numTilesEdge);
tilesZ = linspace(extremes(3), extremes(6), numTilesEdge);
[tilesX, tilesY, tilesZ] = meshgrid(tilesX, tilesY, tilesZ);
tiles = [tilesX(:), tilesY(:), tilesZ(:)];
end
function deviation = getDeviations(orientations, tiles, volSize)
deviation = cell(size(tiles, 1), 1);
for ii = 1:numel(deviation)
ddm = orientations - repmat(tiles(ii, :), [size(orientations, 1), 1]);
ddm = sqrt(sum((ddm .^ 2), 2));
deviation{ii} = reshape(ddm, volSize);
end
end
function reconRvals = getMaxOrientations(gr, recon, finalVolSize)
reconRvals = zeros([3, finalVolSize]);
mergedVols = mergeDeviations(recon, true);
mergedVols = reshape(mergedVols, [1, finalVolSize]);
mergedVols = repmat(mergedVols, [3, 1, 1, 1]);
for ii = 1:numel(recon)
indices = mergedVols == ii;
num_reps = sum(sum(sum(indices))) / 3;
reconRvals(indices) = repmat(gr{ii}.R_vector', [num_reps, 1]);
end
reconRvals = reshape(reconRvals, [3, prod(finalVolSize)])';
end
function [avg_R_vecs, avg_R_vecs_int] = getAverageOrientations(gr, recon_vols, final_vol_size)
avg_R_vecs = zeros([3, final_vol_size]);
avg_R_vecs_int = zeros([3, final_vol_size]);
for ii = 1:numel(recon_vols)
weights = reshape(recon_vols{ii}, [1, final_vol_size]);
weights = repmat(weights, [3, 1, 1, 1]);
avg_R_vecs_int = avg_R_vecs_int + weights;
avg_R_vecs = avg_R_vecs + weights .* ...
repmat(gr{ii}.R_vector', [1, final_vol_size]);
end
avg_R_vecs = avg_R_vecs ./ (avg_R_vecs_int + (avg_R_vecs_int == 0));
avg_R_vecs = reshape(avg_R_vecs, [3, prod(final_vol_size)])';
end