Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DCT
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Jira
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
graintracking
DCT
Commits
d4d42636
Commit
d4d42636
authored
9 years ago
by
Nicola Vigano
Browse files
Options
Downloads
Patches
Plain Diff
Fixed polyhedron determination from planes
Signed-off-by:
Nicola Vigano
<
nicola.vigano@esrf.fr
>
parent
b061d5ef
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
zUtil_Maths/gtMathsGetPolyhedronVerticesFromPlaneNormals.m
+66
-25
66 additions, 25 deletions
zUtil_Maths/gtMathsGetPolyhedronVerticesFromPlaneNormals.m
with
66 additions
and
25 deletions
zUtil_Maths/gtMathsGetPolyhedronVerticesFromPlaneNormals.m
+
66
−
25
View file @
d4d42636
...
...
@@ -19,8 +19,17 @@ function verts = gtMathsGetPolyhedronVerticesFromPlaneNormals(pl_normals)
for
ii
=
1
:
num_pls
[
ps
,
ds_vers
]
=
get_intersecting_lines
(
ii
,
pl_normals
,
pl_normals_vers
,
pl_normals_norm
);
verts
=
[
verts
;
get_intersection_points
(
ps
,
ds_vers
,
pl_normals
,
pl_normals_vers
,
pl_normals_norm
)];
verts
=
[
verts
;
...
get_intersection_points
(
ps
,
ds_vers
,
pl_normals_vers
,
pl_normals_norm
)];
%#ok<AGROW>
end
validation_norms
=
pl_normals_norm
+
eps
(
'single'
);
validation_pls
=
pl_normals_vers
.*
validation_norms
(:,
[
1
1
1
]);
% Let's remove the ones that already fall outside of the polyhedron
valid
=
gtMathsIsPointInPolyhedron
(
verts
,
[
validation_pls
,
pl_normals_vers
]);
verts
=
verts
(
valid
,
:);
end
function
[
ps
,
ds_vers
]
=
get_intersecting_lines
(
pl_ii
,
pl_normals
,
pl_normals_vers
,
pl_normals_norm
)
...
...
@@ -32,10 +41,6 @@ function [ps, ds_vers] = get_intersecting_lines(pl_ii, pl_normals, pl_normals_ve
other_pls_vers
=
pl_normals_vers
(
pl_ii
+
1
:
end
,
:);
other_pls_norm
=
pl_normals_norm
(
pl_ii
+
1
:
end
);
% other_pls = pl_normals([1:pl_ii-1, pl_ii+1:end], :);
% other_pls_vers = pl_normals_vers([1:pl_ii-1, pl_ii+1:end], :);
% other_pls_norm = pl_normals_norm([1:pl_ii-1, pl_ii+1:end]);
% No intersection is defined for parallel planes
dot_prods_pl_pls
=
(
pl_vers
*
other_pls_vers
')'
;
not_parallel
=
abs
(
dot_prods_pl_pls
)
<
(
1
-
eps
(
'single'
));
...
...
@@ -62,52 +67,88 @@ function [ps, ds_vers] = get_intersecting_lines(pl_ii, pl_normals, pl_normals_ve
% Position of the intersection line (hopefully closest to 0)
ps
=
pl
(
ones_pls
,
:)
+
cs_norm
(:,
[
1
1
1
])
.*
cs_vers
;
% Let's remove the ones that already fall outside of the polyhedron
valid
=
gtMathsIsPointInPolyhedron
(
ps
,
[
pl_normals
,
pl_normals_vers
]);
ds_vers
=
ds_vers
(
valid
,
:);
ps
=
ps
(
valid
,
:);
else
ds_vers
=
zeros
(
0
,
3
);
ps
=
zeros
(
0
,
3
);
end
end
function
points
=
get_intersection_points
(
ps
,
ds_vers
,
pl_normals
,
pl_normals_vers
,
pl_normals_norm
)
points
=
zeros
(
0
,
3
);
function
points
=
get_intersection_points
(
ps
,
ds_vers
,
pl_normals_vers
,
pl_normals_norm
)
num_ps
=
size
(
ps
,
1
);
% this is based on the fact that the intersection with the different planes
% will be of two types: the ones bounded from the top and the ones bounded
% from the bottom. We want to find the two points which are the most
% restrictive in both cases.
% If they are not valid, we will take care of it later.
points
=
zeros
(
2
*
num_ps
,
3
);
dot_prods_ds_pls
=
(
ds_vers
*
pl_normals_vers
')'
;
not_perpendiculars
=
abs
(
dot_prods_ds_pls
)
>
eps
(
'single'
);
for
line_ii
=
1
:
size
(
ps
,
1
)
for
line_ii
=
1
:
num_ps
p
=
ps
(
line_ii
,
:);
d_vers
=
ds_vers
(
line_ii
,
:);
dot_prods_d_pls
=
(
d_vers
*
pl_normals_vers
')'
;
not_perpendicular
=
abs
(
dot_prods_d_pls
)
>
eps
(
'single'
);
dot_prods_d_pls
=
dot_prods_ds_pls
(:,
line_ii
)
;
not_perpendicular
=
not_perpendiculars
(:,
line_ii
);
dot_prods_d_pls
=
dot_prods_d_pls
(
not_perpendicular
);
pls_vers
=
pl_normals_vers
(
not_perpendicular
,
:);
pls_norm
=
pl_normals_norm
(
not_perpendicular
);
ones_p
=
ones
(
numel
(
find
(
not_perpendicular
)),
1
)
;
ds_norm
=
(
pls_norm
-
(
p
*
pls_vers
')'
)
.
/
dot_prods_d_pls
;
ds_norm
=
(
pls_norm
-
(
p
*
pls_vers
')'
)
.
/
dot_prods_d_pls
(
not_perpendicular
);
min_norm
=
min
(
ds_norm
(
dot_prods_d_pls
>
0
));
max_norm
=
max
(
ds_norm
(
dot_prods_d_pls
<
0
));
tmp_points
=
p
(
ones_p
,
:)
+
d_vers
(
ones_p
,
:)
.*
ds_norm
(:,
[
1
1
1
]);
% Let's remove the ones that already fall outside of the polyhedron
valid
=
gtMathsIsPointInPolyhedron
(
tmp_points
,
[
pl_normals
,
pl_normals_vers
]);
points
=
[
points
;
tmp_points
(
valid
,
:)];
points
(
2
*
(
line_ii
-
1
)
+
1
,
:)
=
p
+
d_vers
*
min_norm
;
points
(
2
*
line_ii
,
:)
=
p
+
d_vers
*
max_norm
;
end
end
function
plot_points
(
points
,
pl_normals
,
pl_normals_norm
)
function
plot_points
(
points
,
pl_normals
)
%#ok<DEFNU>
f
=
figure
();
ax
=
axes
(
'parent'
,
f
);
hold
(
ax
,
'on'
)
scatter3
(
ax
,
points
(:,
1
),
points
(:,
2
),
points
(:,
3
),
30
,
'r'
,
'filled'
)
% I should do lines from each point, and then draw the pl_normals
zeros_pls
=
zeros
(
size
(
pl_normals
,
1
),
1
);
quiver3
(
ax
,
zeros_pls
,
zeros_pls
,
zeros_pls
,
pl_normals
(:,
1
),
pl_normals
(:,
2
),
pl_normals
(:,
3
),
10
/
9
)
hold
(
ax
,
'off'
)
end
function
plot_planes_and_points
(
points
,
pl_normals
,
pl_normals_norm
)
%#ok<DEFNU>
f
=
figure
();
ax
=
axes
(
'parent'
,
f
);
grid
(
ax
,
'on'
)
hold
(
ax
,
'on'
)
scatter3
(
ax
,
points
(:,
1
),
points
(:,
2
),
points
(:,
3
),
30
,
'r'
,
'filled'
)
% I should do lines from each point, and then draw the pl_normals
zeros_pls
=
zeros
(
size
(
pl_normals
,
1
),
1
);
quiver3
(
ax
,
zeros_pls
,
zeros_pls
,
zeros_pls
,
pl_normals
(:,
1
),
pl_normals
(:,
2
),
pl_normals
(:,
3
),
10
/
9
)
for
ii
=
1
:
size
(
pl_normals
,
1
)
plane
=
createPlane
(
pl_normals
(
ii
,
:),
pl_normals
(
ii
,
:)
/
pl_normals_norm
(
ii
));
drawPlane3d
(
plane
);
end
hold
(
ax
,
'off'
)
end
function
plot_plane_and_lines
(
ii
,
pl_normals
,
pl_normals_vers
,
ps
,
ds_vers
)
%#ok<DEFNU>
f
=
figure
();
ax
=
axes
(
'parent'
,
f
);
% I should do lines from each point, and then draw the pl_normals
quiver3
(
ax
,
ps
(:,
1
),
ps
(:,
2
),
ps
(:,
3
),
ds_vers
(:,
1
),
ds_vers
(:,
2
),
ds_vers
(:,
3
),
10
/
9
)
grid
(
ax
,
'on'
)
hold
(
ax
,
'on'
)
plane
=
createPlane
(
pl_normals
(
ii
,
:),
pl_normals_vers
(
ii
,
:));
drawPlane3d
(
plane
);
hold
(
ax
,
'off'
)
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment