Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DCT
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Jira
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
graintracking
DCT
Commits
94af1a64
Commit
94af1a64
authored
6 years ago
by
Wolfgang Ludwig
Browse files
Options
Downloads
Patches
Plain Diff
Take into account initial gonio offset positions
Signed-off-by:
Wolfgang Ludwig
<
wolfgang.ludwig@esrf.fr
>
parent
ceeb3be9
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
zUtil_Topotomo/calc_pole_tilts_id11_index2.m
+166
-73
166 additions, 73 deletions
zUtil_Topotomo/calc_pole_tilts_id11_index2.m
with
166 additions
and
73 deletions
zUtil_Topotomo/calc_pole_tilts_id11_index2.m
+
166
−
73
View file @
94af1a64
function
[
phx
,
phy
]
=
calc_pole_tilts_id11_index
(
parameters
,
gid
,
thetatypes
)
% assumes initial tilts of the goniometer to be at 0, 0 - uses ID11
% goniometer geometry with maximum tilt of 20 deg for samrx and 10 deg for samry
load
(
sprintf
(
'%s/4_grains/phase_01/index.mat'
,
parameters
.
acq
.
dir
));
maxvalue
=
tand
(
20
);
% Sample reference system
LabX
=
[
1
0
0
]
'
;
samgeo
.
dirx
=
[
1
0
0
];
LabY
=
[
0
1
0
]
'
;
samgeo
.
diry
=
[
0
1
0
];
LabZ
=
[
0
0
1
]
'
;
samgeo
.
dirz
=
[
0
0
1
];
% Directions of instrument axis at sample rotation omega = 0 (...due to sample omega = 0 corresponds to instrument rotation = -90 deg)
instrgeo
.
dirx
=
[
0
-
1
0
];
instrgeo
.
diry
=
[
1
0
0
];
instrgeo
.
dirz
=
[
0
0
1
];
% Rotation Matrix (based on angle & axis -> Rodrigues Rotation Formula) v_rotated = R(angle, axis) * v
R
=
@
(
angle
,
axis
)
gtMathsRotationTensor
(
angle
,
gtMathsRotationMatrixComp
(
axis
,
'col'
));
% Loop through grains and their reflections...
for
i
=
1
:
length
(
gid
)
if
exist
(
sprintf
(
'%s/4_grains/phase_01/grain_%04d.mat'
,
parameters
.
acq
.
dir
,
gid
(
i
)),
'file'
)
g
=
load
(
sprintf
(
'%s/4_grains/phase_01/grain_%04d.mat'
,
parameters
.
acq
.
dir
,
gid
(
i
)));
else
g
=
gtCalculateGrain
(
grain
{
gid
(
i
)},
parameters
);
end
ind
=
find
(
g
.
allblobs
.
pl
(:,
3
)
>
maxvalue
&
ismember
(
g
.
allblobs
.
thetatype
,
thetatypes
));
if
~
isempty
(
ind
)
[
pl
,
ia
,
ic
]
=
unique
(
g
.
allblobs
.
pl
(
ind
,:),
'rows'
,
'stable'
);
ind
=
ind
(
ia
);
for
j
=
1
:
length
(
ind
)
hkl
=
g
.
allblobs
.
hkl
(
ind
(
j
),
:);
theta
=
g
.
allblobs
.
theta
(
ind
(
j
),:);
G_sam
=
g
.
allblobs
.
pl
(
ind
(
j
),:);
diffrz
=
g
.
allblobs
.
omega
(
ind
(
j
))
-
90
;
uv
=
g
.
allblobs
.
detector
.
uvw
(
ind
(
j
),
1
:
2
);
% GInstr = Plane normal in Instrument reference system:
% samrx is upper tilt and rotates around LabX at diffrz = 0 (omega = 90)
% ramry is lower tile and rotates around LabY at diffrz = 0 (omega = 90)
G_instr
=
gtGeoSam2Sam
(
G_sam
,
samgeo
,
instrgeo
,
1
,
1
);
% first solve for upper tilt: RX * G_sam = [r 0 s] -> G_sam(2)*cos(phx) - G_sam(3)*sin(phx) = 0
phx
=
atand
(
G_instr
(
2
)/
G_instr
(
3
));
tmp
=
R
(
phx
,
LabX
)
*
G_instr
'
;
% now solve for lower tilt: RY * tmp = [0 0 1], RY = [cos(phy) 0 sin(phy); 0 1 0; -sin(phy) 0 cos(phy)]; ->
% phy = atand(-tmp(1)/tmp(3));
phy
=
atand
(
-
tmp
(
1
)/
tmp
(
3
));
% testing
% G_aligned = R(phy, LabY) * tmp;
if
(
abs
(
phy
)
<
10
&&
abs
(
phx
)
<
20
)
disp
(
sprintf
(
'Grain %d: Found %d %d %d reflection: diffry = %f samrx = %f samry = %f\n'
,
gid
(
i
),
hkl
(
1
),
hkl
(
2
),
hkl
(
3
),
theta
,
phx
,
phy
));
disp
(
sprintf
(
'Positions in DCT scan: diffrz = %f, u = %f v = %f\n'
,
diffrz
,
uv
(
1
),
uv
(
2
)));
end
end
end
end
function
out
=
calc_pole_tilts_id11_index2
(
parameters
,
gid
,
thetatypes
)
% assumes initial tilts of the goniometer to be at 0, 0 - uses ID11
% goniometer geometry with maximum tilt of 20 deg for samrx and 10 deg for samry
% To do: - automatically determine offsets
% - use Diffractometer class
cd
(
parameters
.
acq
.
dir
)
conf
=
gtGetOffsets
(
parameters
);
conf
.
samrx_max
=
18
;
conf
.
samry_max
=
14
;
conf
.
thetatype_slipplane
=
1
;
conf
.
test_results
=
0
;
conf
.
nfdtx_offset
=
95.77
;
conf
.
d3tz_offset
=
0
;
conf
.
distance
=
16.43
;
conf
.
omegas
=
[
0
:
4
:
356
];
conf
.
loaddir
=
[
0
0
1
];
load
(
sprintf
(
'%s/4_grains/phase_01/index.mat'
,
parameters
.
acq
.
dir
));
maxvalue
=
tand
(
20
);
%% Rotation Matrix (based on angle & axis -> Rodrigues Rotation Formula) v_rotated = R(angle, axis) * v
R
=
@
(
angle
,
axis
)
gtMathsRotationTensor
(
angle
,
gtMathsRotationMatrixComp
(
axis
,
'col'
));
%% Sample reference system
samgeo
=
parameters
.
samgeo
;
LabX
=
[
1
0
0
]
'
;
LabY
=
[
0
1
0
]
'
;
LabZ
=
[
0
0
1
]
'
;
%% Directions of instrument axis at "dct" rotation angle omega = 0 (diffrz rotation angle of first image in scan)
T
=
R
(
conf
.
diffrz_offset
,
LabZ
)
*
R
(
conf
.
samry_offset
,
LabY
)
*
R
(
conf
.
samrx_offset
,
LabX
);
instrgeo
.
orig
=
[
0
,
0
,
0
];
instrgeo
.
dirx
=
(
T
*
LabX
)
'
;
instrgeo
.
diry
=
(
T
*
LabY
)
'
;
instrgeo
.
dirz
=
(
T
*
LabZ
)
'
;
instrgeo
.
voxsize
=
[
1
1
1
];
RZ0
=
R
(
conf
.
diffrz_offset
,
LabZ
);
%% Loop through grains and their reflections...
for
i
=
1
:
length
(
gid
)
tt_id
=
1
;
tt_pars
=
{};
gr_cen_instr
=
gtGeoSam2Sam
(
grain
{
gid
(
i
)}
.
center
,
samgeo
,
instrgeo
,
false
,
false
);
if
exist
(
sprintf
(
'%s/4_grains/phase_01/grain_%04d.mat'
,
parameters
.
acq
.
dir
,
gid
(
i
)),
'file'
)
g
=
load
(
sprintf
(
'%s/4_grains/phase_01/grain_%04d.mat'
,
parameters
.
acq
.
dir
,
gid
(
i
)));
else
g
=
gtCalculateGrain
(
grain
{
gid
(
i
)},
parameters
);
end
ind
=
find
(
g
.
allblobs
.
pl
(:,
3
)
>
maxvalue
&
ismember
(
g
.
allblobs
.
thetatype
,
thetatypes
));
if
~
isempty
(
conf
.
thetatype_slipplane
)
slip_ind
=
find
(
g
.
allblobs
.
thetatype
==
conf
.
thetatype_slipplane
&
g
.
allblobs
.
omind
==
1
);
slip_planes
=
g
.
allblobs
.
pl
(
slip_ind
,
:);
end
if
~
isempty
(
ind
)
[
pl
,
ia
,
ic
]
=
unique
(
g
.
allblobs
.
pl
(
ind
,
:),
'rows'
,
'stable'
);
ind
=
ind
(
ia
);
for
j
=
1
:
length
(
ind
)
hklsp
=
g
.
allblobs
.
hklsp
(
ind
(
j
),
:);
hkl
=
g
.
allblobs
.
hkl
(
ind
(
j
),
:);
theta
=
g
.
allblobs
.
theta
(
ind
(
j
),
:);
G_sam
=
g
.
allblobs
.
pl
(
ind
(
j
),
:);
omega
=
g
.
allblobs
.
omega
(
ind
(
j
));
uv
=
g
.
allblobs
.
detector
.
uvw
(
ind
(
j
),
1
:
2
);
%% GInstr = Plane normal in Instrument reference system:
% samrx is upper tilt and rotates around LabX at diffrz = 0
% samrx range: [-20 20]
% samry is lower tilt and rotates around LabY at diffrz = 0
% samry range: [-15 15]
%G_instr = gtGeoSam2Sam(G_sam, samgeo, instrgeo, 1, 1);
%G_instr = R(-conf.offset, LabZ) * G_sam'; G_instr = G_instr';
G_instr
=
T
' * G_sam'
;
% first solve for upper tilt: RX * G_sam = [r 0 s] -> G_sam(2)*cos(phx) - G_sam(3)*sin(phx) = 0
phx
=
atand
(
G_instr
(
2
)/
G_instr
(
3
));
tmp
=
R
(
phx
,
LabX
)
*
G_instr
;
% now solve for lower tilt: RY * tmp = [0 0 1], RY = [cos(phy) 0 sin(phy); 0 1 0; -sin(phy) 0 cos(phy)]; ->
% phy = atand(-tmp(1)/tmp(3));
phy
=
atand
(
-
tmp
(
1
)/
tmp
(
3
));
if
conf
.
test_results
fprintf
(
'samrx = %f samry = %f for %s\n'
,
phx
,
phy
,
num2str
(
hklsp
))
G_aligned
=
R
(
phy
,
LabY
)
*
tmp
;
end
if
(
abs
(
phy
)
<
conf
.
samry_max
&
abs
(
phx
)
<
conf
.
samrx_max
)
fprintf
(
'Grain %d: Found %s reflection: diffry = %f samrx = %f samry = %f\n'
,
gid
(
i
),
num2str
(
hklsp
),
theta
,
phx
,
phy
)
fprintf
(
'Positions in DCT scan: omega = %f (diffrz = %f), u = %f v = %f\n'
,
omega
,
omega
+
conf
.
diffrz_offset
,
uv
(
1
),
uv
(
2
))
% Calculate edge_on positions for slip-planes
tt_pars
{
tt_id
}
.
nfdtx
=
conf
.
distance
+
conf
.
nfdtx_offset
;
tt_pars
{
tt_id
}
.
d3tz
=
conf
.
distance
*
tand
(
2
*
theta
)
+
conf
.
d3tz_offset
;
tt_pars
{
tt_id
}
.
diffry
=
-
theta
;
% the id11 diffractometer can only rotate this way round...
tt_pars
{
tt_id
}
.
samrx
=
phx
;
tt_pars
{
tt_id
}
.
samry
=
phy
;
tt_pars
{
tt_id
}
.
samtx
=
conf
.
samtx_offset
-
gr_cen_instr
(
1
);
tt_pars
{
tt_id
}
.
samty
=
conf
.
samty_offset
-
gr_cen_instr
(
2
);
tt_pars
{
tt_id
}
.
samtz
=
conf
.
samtz_offset
-
gr_cen_instr
(
3
);
tt_pars
{
tt_id
}
.
samrx_offset
=
conf
.
samrx_offset
;
tt_pars
{
tt_id
}
.
samry_offset
=
conf
.
samry_offset
;
tt_pars
{
tt_id
}
.
samtx_offset
=
conf
.
samtx_offset
;
tt_pars
{
tt_id
}
.
samty_offset
=
conf
.
samty_offset
;
tt_pars
{
tt_id
}
.
samtz_offset
=
conf
.
samtz_offset
;
tt_pars
{
tt_id
}
.
diffrz_offset
=
conf
.
diffrz_offset
;
tt_pars
{
tt_id
}
.
omegas
=
conf
.
omegas
;
fprintf
(
'\nDetector positions for %f mm distance: mv nfdtx %f, d3tz %f\n'
,
conf
.
distance
,
tt_pars
{
tt_id
}
.
nfdtx
,
tt_pars
{
tt_id
}
.
d3tz
)
fprintf
(
'mv diffry %f samrx %f samry %f samtx %f samty %f samtz %f\n\n'
,
-
theta
,
phx
,
phy
,
tt_pars
{
tt_id
}
.
samtx
,
...
tt_pars
{
tt_id
}
.
samty
,
tt_pars
{
tt_id
}
.
samtz
)
if
~
isempty
(
conf
.
thetatype_slipplane
)
for
ii
=
1
:
size
(
slip_planes
,
1
)
RUT
=
R
(
phx
,
LabX
);
RLT
=
R
(
phy
,
LabY
);
slip_n
=
RZ0
*
RLT
*
RUT
*
T
' * slip_planes(ii, :)'
;
% tilted slip plane normal direction in Lab coordinates
% Here we try to solve an equation of type a * sin(om) + b * cos(om) = c
% <=> sqrt(a?? + b??) sin(om + beta) -> x = 2 atand(...)
% the following terms result from dot (beam_dir,
% pl_rot) = 0 ! (slip plane normal perpendicular to
% diffracted beam direction)
a
=
-
cosd
(
theta
)
*
slip_n
(
2
);
b
=
cosd
(
theta
)
*
slip_n
(
1
);
c
=
-
sind
(
theta
)
*
slip_n
(
3
);
D
=
a
*
a
+
b
*
b
-
c
*
c
;
if
D
>
0
d
=
sqrt
(
D
);
om
(
1
)
=
2
*
atand
((
a
+
d
)
/
(
b
+
c
));
om
(
2
)
=
2
*
atand
((
a
-
d
)
/
(
b
+
c
));
om
=
mod
(
om
+
360
,
360
);
fprintf
(
'The %s slipplane will be observed at omega = %f and %f (diffrz = %f and %f)\n'
,
...
num2str
(
g
.
allblobs
.
hklsp
(
slip_ind
(
ii
),
:)),
om
(
1
),
om
(
2
),
om
(
1
)
+
conf
.
diffrz_offset
,
om
(
2
)
+
conf
.
diffrz_offset
);
if
conf
.
test_results
ROM1
=
R
(
om
(
1
),
LabZ
);
ROM2
=
R
(
om
(
2
),
LabZ
);
test1
=
ROM1
*
slip_n
;
test2
=
ROM2
*
slip_n
;
dotprod1
=
test1
' * [cosd(theta), 0 , sind(theta)]'
;
fprintf
(
'[%f %f %f] * [cosd(theta), 0, sind(theta)] = %f\n'
,
test1
(
1
),
test1
(
2
),
test1
(
3
),
dotprod1
)
dotprod2
=
test2
' * [cosd(theta), 0 , sind(theta)]'
;
fprintf
(
'[%f %f %f] * [cosd(theta), 0, sind(theta)] = %f\n'
,
test2
(
1
),
test2
(
2
),
test2
(
3
),
dotprod2
)
end
end
end
fprintf
(
'\n\n'
)
end
tt_id
=
tt_id
+
1
;
end
end
end
out
{
i
}
.
tt_pars
=
tt_pars
;
out
{
i
}
.
T
=
T
;
end
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment