Skip to content
Snippets Groups Projects
Commit 94af1a64 authored by Wolfgang Ludwig's avatar Wolfgang Ludwig
Browse files

Take into account initial gonio offset positions

parent ceeb3be9
No related branches found
No related tags found
No related merge requests found
function [phx, phy] = calc_pole_tilts_id11_index(parameters, gid, thetatypes)
% assumes initial tilts of the goniometer to be at 0, 0 - uses ID11
% goniometer geometry with maximum tilt of 20 deg for samrx and 10 deg for samry
load(sprintf('%s/4_grains/phase_01/index.mat',parameters.acq.dir));
maxvalue = tand(20);
% Sample reference system
LabX = [1 0 0]'; samgeo.dirx = [1 0 0];
LabY = [0 1 0]'; samgeo.diry = [0 1 0];
LabZ = [0 0 1]'; samgeo.dirz = [0 0 1];
% Directions of instrument axis at sample rotation omega = 0 (...due to sample omega = 0 corresponds to instrument rotation = -90 deg)
instrgeo.dirx = [ 0 -1 0];
instrgeo.diry = [ 1 0 0];
instrgeo.dirz = [ 0 0 1];
% Rotation Matrix (based on angle & axis -> Rodrigues Rotation Formula) v_rotated = R(angle, axis) * v
R = @(angle,axis)gtMathsRotationTensor(angle, gtMathsRotationMatrixComp(axis, 'col'));
% Loop through grains and their reflections...
for i = 1:length(gid)
if exist(sprintf('%s/4_grains/phase_01/grain_%04d.mat',parameters.acq.dir, gid(i)), 'file')
g=load(sprintf('%s/4_grains/phase_01/grain_%04d.mat',parameters.acq.dir, gid(i)));
else
g=gtCalculateGrain(grain{gid(i)},parameters);
end
ind = find(g.allblobs.pl(:,3) > maxvalue & ismember(g.allblobs.thetatype, thetatypes));
if ~isempty(ind)
[pl, ia, ic] = unique(g.allblobs.pl(ind,:), 'rows', 'stable');
ind = ind(ia);
for j = 1:length(ind)
hkl = g.allblobs.hkl(ind(j), :);
theta = g.allblobs.theta(ind(j),:);
G_sam = g.allblobs.pl(ind(j),:);
diffrz = g.allblobs.omega(ind(j))-90;
uv = g.allblobs.detector.uvw(ind(j),1:2);
% GInstr = Plane normal in Instrument reference system:
% samrx is upper tilt and rotates around LabX at diffrz = 0 (omega = 90)
% ramry is lower tile and rotates around LabY at diffrz = 0 (omega = 90)
G_instr = gtGeoSam2Sam(G_sam, samgeo, instrgeo, 1, 1);
% first solve for upper tilt: RX * G_sam = [r 0 s] -> G_sam(2)*cos(phx) - G_sam(3)*sin(phx) = 0
phx = atand(G_instr(2)/G_instr(3));
tmp = R(phx, LabX) * G_instr';
% now solve for lower tilt: RY * tmp = [0 0 1], RY = [cos(phy) 0 sin(phy); 0 1 0; -sin(phy) 0 cos(phy)]; ->
% phy = atand(-tmp(1)/tmp(3));
phy = atand(-tmp(1)/tmp(3));
% testing
% G_aligned = R(phy, LabY) * tmp;
if (abs(phy) < 10 && abs(phx) <20)
disp(sprintf('Grain %d: Found %d %d %d reflection: diffry = %f samrx = %f samry = %f\n', gid(i), hkl(1), hkl(2), hkl(3), theta, phx, phy));
disp(sprintf('Positions in DCT scan: diffrz = %f, u = %f v = %f\n', diffrz, uv(1), uv(2)));
end
end
end
end
function out = calc_pole_tilts_id11_index2(parameters, gid, thetatypes)
% assumes initial tilts of the goniometer to be at 0, 0 - uses ID11
% goniometer geometry with maximum tilt of 20 deg for samrx and 10 deg for samry
% To do: - automatically determine offsets
% - use Diffractometer class
cd(parameters.acq.dir)
conf = gtGetOffsets(parameters);
conf.samrx_max = 18;
conf.samry_max = 14;
conf.thetatype_slipplane = 1;
conf.test_results = 0;
conf.nfdtx_offset = 95.77;
conf.d3tz_offset = 0;
conf.distance = 16.43;
conf.omegas = [0 : 4: 356];
conf.loaddir = [0 0 1];
load(sprintf('%s/4_grains/phase_01/index.mat',parameters.acq.dir));
maxvalue = tand(20);
%% Rotation Matrix (based on angle & axis -> Rodrigues Rotation Formula) v_rotated = R(angle, axis) * v
R = @(angle,axis)gtMathsRotationTensor(angle, gtMathsRotationMatrixComp(axis, 'col'));
%% Sample reference system
samgeo = parameters.samgeo;
LabX = [1 0 0]';
LabY = [0 1 0]';
LabZ = [0 0 1]';
%% Directions of instrument axis at "dct" rotation angle omega = 0 (diffrz rotation angle of first image in scan)
T = R(conf.diffrz_offset, LabZ) * R(conf.samry_offset, LabY) * R(conf.samrx_offset, LabX);
instrgeo.orig = [0, 0, 0];
instrgeo.dirx = (T * LabX)';
instrgeo.diry = (T * LabY)';
instrgeo.dirz = (T * LabZ)';
instrgeo.voxsize = [1 1 1];
RZ0 = R(conf.diffrz_offset, LabZ);
%% Loop through grains and their reflections...
for i = 1:length(gid)
tt_id = 1;
tt_pars = {};
gr_cen_instr = gtGeoSam2Sam(grain{gid(i)}.center, samgeo, instrgeo, false, false);
if exist(sprintf('%s/4_grains/phase_01/grain_%04d.mat',parameters.acq.dir, gid(i)), 'file')
g=load(sprintf('%s/4_grains/phase_01/grain_%04d.mat',parameters.acq.dir, gid(i)));
else
g=gtCalculateGrain(grain{gid(i)},parameters);
end
ind = find(g.allblobs.pl(:,3) > maxvalue & ismember(g.allblobs.thetatype, thetatypes));
if ~isempty(conf.thetatype_slipplane)
slip_ind = find(g.allblobs.thetatype == conf.thetatype_slipplane & g.allblobs.omind == 1);
slip_planes = g.allblobs.pl(slip_ind, :);
end
if ~isempty(ind)
[pl, ia, ic] = unique(g.allblobs.pl(ind, :), 'rows', 'stable');
ind = ind(ia);
for j = 1:length(ind)
hklsp = g.allblobs.hklsp(ind(j), :);
hkl = g.allblobs.hkl(ind(j), :);
theta = g.allblobs.theta(ind(j), :);
G_sam = g.allblobs.pl(ind(j), :);
omega = g.allblobs.omega(ind(j));
uv = g.allblobs.detector.uvw(ind(j), 1:2);
%% GInstr = Plane normal in Instrument reference system:
% samrx is upper tilt and rotates around LabX at diffrz = 0
% samrx range: [-20 20]
% samry is lower tilt and rotates around LabY at diffrz = 0
% samry range: [-15 15]
%G_instr = gtGeoSam2Sam(G_sam, samgeo, instrgeo, 1, 1);
%G_instr = R(-conf.offset, LabZ) * G_sam'; G_instr = G_instr';
G_instr = T' * G_sam';
% first solve for upper tilt: RX * G_sam = [r 0 s] -> G_sam(2)*cos(phx) - G_sam(3)*sin(phx) = 0
phx = atand(G_instr(2)/G_instr(3));
tmp = R(phx, LabX) * G_instr;
% now solve for lower tilt: RY * tmp = [0 0 1], RY = [cos(phy) 0 sin(phy); 0 1 0; -sin(phy) 0 cos(phy)]; ->
% phy = atand(-tmp(1)/tmp(3));
phy = atand(-tmp(1)/tmp(3));
if conf.test_results
fprintf('samrx = %f samry = %f for %s\n',phx, phy, num2str(hklsp))
G_aligned = R(phy, LabY) * tmp;
end
if (abs(phy) < conf.samry_max & abs(phx) < conf.samrx_max)
fprintf('Grain %d: Found %s reflection: diffry = %f samrx = %f samry = %f\n', gid(i), num2str(hklsp), theta, phx, phy)
fprintf('Positions in DCT scan: omega = %f (diffrz = %f), u = %f v = %f\n', omega, omega + conf.diffrz_offset, uv(1), uv(2))
% Calculate edge_on positions for slip-planes
tt_pars{tt_id}.nfdtx = conf.distance + conf.nfdtx_offset;
tt_pars{tt_id}.d3tz = conf.distance * tand(2 *theta) + conf.d3tz_offset;
tt_pars{tt_id}.diffry = -theta; % the id11 diffractometer can only rotate this way round...
tt_pars{tt_id}.samrx = phx;
tt_pars{tt_id}.samry = phy;
tt_pars{tt_id}.samtx = conf.samtx_offset - gr_cen_instr(1);
tt_pars{tt_id}.samty = conf.samty_offset - gr_cen_instr(2);
tt_pars{tt_id}.samtz = conf.samtz_offset - gr_cen_instr(3);
tt_pars{tt_id}.samrx_offset = conf.samrx_offset;
tt_pars{tt_id}.samry_offset = conf.samry_offset;
tt_pars{tt_id}.samtx_offset = conf.samtx_offset;
tt_pars{tt_id}.samty_offset = conf.samty_offset;
tt_pars{tt_id}.samtz_offset = conf.samtz_offset;
tt_pars{tt_id}.diffrz_offset= conf.diffrz_offset;
tt_pars{tt_id}.omegas = conf.omegas;
fprintf('\nDetector positions for %f mm distance: mv nfdtx %f, d3tz %f\n', conf.distance, tt_pars{tt_id}.nfdtx, tt_pars{tt_id}.d3tz)
fprintf('mv diffry %f samrx %f samry %f samtx %f samty %f samtz %f\n\n', -theta, phx, phy, tt_pars{tt_id}.samtx, ...
tt_pars{tt_id}.samty, tt_pars{tt_id}.samtz)
if ~isempty(conf.thetatype_slipplane)
for ii = 1 : size(slip_planes, 1)
RUT = R(phx, LabX);
RLT = R(phy, LabY);
slip_n = RZ0 * RLT * RUT * T' * slip_planes(ii, :)'; % tilted slip plane normal direction in Lab coordinates
% Here we try to solve an equation of type a * sin(om) + b * cos(om) = c
% <=> sqrt(a?? + b??) sin(om + beta) -> x = 2 atand(...)
% the following terms result from dot (beam_dir,
% pl_rot) = 0 ! (slip plane normal perpendicular to
% diffracted beam direction)
a = -cosd(theta) * slip_n(2);
b = cosd(theta) * slip_n(1);
c = -sind(theta) * slip_n(3);
D = a*a + b*b - c*c;
if D > 0
d = sqrt(D);
om(1) = 2 * atand((a + d) / (b + c));
om(2) = 2 * atand((a - d) / (b + c));
om = mod(om + 360, 360);
fprintf('The %s slipplane will be observed at omega = %f and %f (diffrz = %f and %f)\n', ...
num2str(g.allblobs.hklsp(slip_ind(ii), :)), om(1), om(2), om(1) + conf.diffrz_offset, om(2) + conf.diffrz_offset);
if conf.test_results
ROM1 = R(om(1), LabZ);
ROM2 = R(om(2), LabZ);
test1 = ROM1 * slip_n;
test2 = ROM2 * slip_n;
dotprod1 = test1' * [cosd(theta), 0 , sind(theta)]';
fprintf('[%f %f %f] * [cosd(theta), 0, sind(theta)] = %f\n', test1(1), test1(2), test1(3), dotprod1)
dotprod2 = test2' * [cosd(theta), 0 , sind(theta)]';
fprintf('[%f %f %f] * [cosd(theta), 0, sind(theta)] = %f\n', test2(1), test2(2), test2(3), dotprod2)
end
end
end
fprintf('\n\n')
end
tt_id = tt_id + 1;
end
end
end
out{i}.tt_pars = tt_pars;
out{i}.T = T;
end
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment