Newer
Older
function gtReadBoundaryProperties(boundaries_structure, vol_boundaries)%, r_vectors)
%continue to add to boundaries_structure.mat - orientations,
%disorientation, r-vectors etc.
load parameters;
spacegroup=parameters.acq.spacegroup;
maxgrain=max(maxgrain, boundaries_structure(i).grain1);
maxgrain=max(maxgrain, boundaries_structure(i).grain2);
end
r_vectors=[];
if exist('r_vectors.mat', 'file')
r_vectors=zeros(maxgrain,4);%keep a record to save loading .mats
%get sym operators
if spacegroup==225 || spacegroup==229
% cubic material
sym = gtGetCubicSymOp;
elseif spacegroup==167 || spacegroup==663 || spacegroup==194
% hexagonal material - 4x4 element sym operators
sym=gtGetHexagonalSymOp_sab;
else
disp('unrecognised spacegroup! quitting...')
return
end
% loop through the boundaries
for i=1:size(boundaries_structure, 2)
if boundaries_structure(i).count<4 %can still be useful to calc index planes where we have only one of the grains
continue
%Read in the r-vector data for the two grains
i
grain1=boundaries_structure(i).grain1;
grain2=boundaries_structure(i).grain2;
if grain1==0
g1=[];
g1equiv=[];
else
if all(r_vectors(grain1,:)==0)
tmp1=load(sprintf('4_grains/grain%d_/grain%d_.mat',grain1,grain1), 'R_vector');
R1=tmp1.R_vector;
r_vectors(grain1,:)=[grain1 R1];
else
R1= r_vectors(grain1,2:4);
end
boundaries_structure(i).grain1_R_vector=R1;
g1=Rod2g(R1);
if grain2==0
g2=[];
else
if all(r_vectors(grain2,:)==0)
tmp2=load(sprintf('4_grains/grain%d_/grain%d_.mat',grain2,grain2), 'R_vector');
R2=tmp2.R_vector;
r_vectors(grain2,:)=[grain2 R2];
else
R2= r_vectors(grain2,2:4);
end
boundaries_structure(i).grain2_R_vector=R2;
g2=Rod2g(R2);
end
% this only works for cubic systems until someone works out how to pdo te
% permutations of the g1 for the hexagonal system
if spacegroup==225 || spacegroup==229
% calculate the misorientation angle and axis between these grains
if ~isempty(g1) & ~isempty(g2)
%if we have both grains
%need to search symmetry equivelents for the minimum misorientation
rot_offset=[];
% warning('g*sym.g maybe should be sym.g*g')
for j=1:24
g1equiv = g1*sym(j).g;
netg = inv(g1equiv)*g2;
rot_offset(j) = acos((trace(netg)-1)/2);
end
dummy = find(rot_offset ==min(rot_offset));
g1equiv = g1*sym(dummy).g;
netg = inv(g1equiv)*g2;
misorientation_angle = (180/pi)*acos((trace(netg)-1)/2);
[eigVec, eigVal]=eig(netg);
for p=1:3
if isreal(eigVec(:,p)) %find the real eigenvector - should be just one
misorientation_axis=eigVec(:,p);
end
end
boundaries_structure(i).misorientation_axis=misorientation_axis';
boundaries_structure(i).misorientation_angle=misorientation_angle;
else
boundaries_structure(i).misorientation_axis=[];
boundaries_structure(i).misorientation_angle=[];
end
elseif spacegroup==167 || spacegroup==663 || spacegroup==194
% same calculation but using hexagonal sym operations
% calculate the misorientation angle and axis between these grains
if ~isempty(g1) & ~isempty(g2)
%if we have both grains
%need to search symmetry equivelents for the minimum misorientation
rot_offset=[];
% warning('g*sym.g maybe should be sym.g*g')
g1equiv = g1*sym(j).g3;
netg = inv(g1equiv)*g2;
rot_offset(j) = acos((trace(netg)-1)/2);
end
dummy = find(rot_offset ==min(rot_offset));
g1equiv = g1*sym(dummy).g3;
netg = inv(g1equiv)*g2;
misorientation_angle = (180/pi)*acos((trace(netg)-1)/2);
[eigVec, eigVal]=eig(netg);
for p=1:3
if isreal(eigVec(:,p)) %find the real eigenvector - should be just one
misorientation_axis=eigVec(:,p);
boundaries_structure(i).eigVal=eigVal(p,p);
end
end
boundaries_structure(i).misorientation_axis=misorientation_axis';
boundaries_structure(i).misorientation_angle=misorientation_angle;
else
boundaries_structure(i).misorientation_axis=[];
boundaries_structure(i).misorientation_angle=[];
boundaries_structure(i).eigVal=[];
end
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
%even if we have only one grain, can deal with the boundary plane
test = vol_boundaries==i;
[x,y,z]=ind2sub(size(test), find(test));
[origin, a]=lsplane([x y z]);
gb_normal=a;
gb_normal(3)=-gb_normal(3);
boundaries_structure(i).gb_norm = gb_normal';
boundaries_structure(i).gb_centre = origin';
if ~isempty(g1equiv)
plane1=inv(g1equiv)*gb_normal;
elseif ~isempty(g1)
plane1=inv(g1)*gb_normal;
else
plane1=[];
end
if ~isempty(g2)
plane2=inv(g2)*gb_normal;
else
plane2=[];
end
if spacegroup==225 || spacegroup==229
% if cubic then this is the index plane
boundaries_structure(i).gb_norm_grain1=plane1';
boundaries_structure(i).gb_norm_grain2=plane2';
elseif spacegroup==167 || spacegroup==663 || spacegroup==194
% if hexagonal, keep cartesian vector, but also
% convert the cartesian plane normal to hexagonal four index notation
% ditto for misorientation axis
boundaries_structure(i).gb_norm_grain1=plane1';
boundaries_structure(i).gb_norm_grain2=plane2';
if ~isempty(plane1)
hkl=plane1;
hkil=[];
hkil(1) = hkl(1) - (1/sqrt(3))*hkl(2);
hkil(2) = (2/sqrt(3))*hkl(2);
hkil(3) = -(hkil(1) + hkil(2));
hkil(4) = hkl(3);
% account for lattice vector lengths
hkil(1:3) = hkil(1:3) / (2/(sqrt(3)*parameters.acq.latticepar(1)));
hkil(4) = hkil(4) / (1/parameters.acq.latticepar(3));
boundaries_structure(i).gb_norm_hex_grain1=hkil;
else
boundaries_structure(i).gb_norm_hex_grain1=[];
end
if ~isempty(plane2)
hkl=plane2;
hkil=[];
hkil(1) = hkl(1) - (1/sqrt(3))*hkl(2);
hkil(2) = (2/sqrt(3))*hkl(2);
hkil(3) = -(hkil(1) + hkil(2));
hkil(4) = hkl(3);
% account for lattice vector lengths
hkil(1:3) = hkil(1:3) / (2/(sqrt(3)*parameters.acq.latticepar(1)));
hkil(4) = hkil(4) / (1/parameters.acq.latticepar(3));
boundaries_structure(i).gb_norm_hex_grain2=hkil;
else
boundaries_structure(i).gb_norm_hex_grain2=[];
end
%
% if ~isempty(boundaries_structure(i).misorientation_axis)
% hkl=misorientation_axis';
%
% hkil=[];
% hkil(1) = hkl(1) - (1/sqrt(3))*hkl(2);
% hkil(2) = (2/sqrt(3))*hkl(2);
% hkil(3) = -(hkil(1) + hkil(2));
% hkil(4) = hkl(3);
% % account for lattice vector lengths
% hkil(1:3) = hkil(1:3) / (2/(sqrt(3)*parameters.acq.latticepar(1)));
% hkil(4) = hkil(4) / (1/parameters.acq.latticepar(3));
% boundaries_structure(i).misorientation_axis_hex=hkil;
% end
else
disp('crystallography not supported!')
end
end % skip small boundaries
end
save('boundaries_structure.mat', 'boundaries_structure')
save('r_vectors.mat', 'r_vectors')