Newer
Older
function [result_viewer, result, post_result, algo] = gtReconstructTestCase(test_data, det_index, do_plot)
if (~exist('det_index', 'var') || isempty(det_index))
det_index = 1;
end
if (~exist('do_plot', 'var') || isempty(do_plot))
do_plot = false;
Nicola Vigano
committed
end
rec_opts = gtReconstruct6DGetParamenters(test_data.parameters);
if (~isfield(test_data, 'gv'))
test_data.gv.dm = gtDefDmvol2Gvdm(test_data.dmvol);
end
Nicola Vigano
committed
gvdm = test_data.gv.dm(:, test_data.gv.used_ind);
% gvcs = test_data.gv.cs(:, test_data.gv.used_ind);
% if (~isfield(test_data, 'intvol'))
% size_int_vol = [ ...
% size(test_data.dmvol, 1), ...
% size(test_data.dmvol, 2), ...
% size(test_data.dmvol, 3) ];
% test_data.intvol = ones(size_int_vol, 'like', test_data.dmvol);
% end
% gvpow = test_data.intvol(test_data.gv.used_ind);
gtGetMaxDisorientation(gvdm, [], 'diameter_average');
gtGetMaxDisorientation(gvdm, [], 'diameter_zero');
if (do_plot)
f = figure();
ax = axes('parent', f);
hold(ax, 'on')
scatter3(ax, gvdm(1, 1:10:end)', gvdm(2, 1:10:end)', gvdm(3, 1:10:end)', 20);
end
sampler = GtOrientationSampling(test_data.parameters, test_data.grain,'detector_index', det_index(1));
if (do_plot)
% Testing ability of GtOrientationSampling to detect the correct
% orientation-space boundingbox
sampler.make_grid_resolution_estim_ODF('cubic', ...
rec_opts.ospace_resolution, 1, rec_opts.max_grid_edge_points);
scatter3(ax, sampler.R_vectors{1}(:, 1), sampler.R_vectors{1}(:, 2), sampler.R_vectors{1}(:, 3), 20, 'r');
drawnow();
hold(ax, 'on')
end
% Using the optimal orientation-space boundingbox
sampler.make_grid_resolution('cubic', rec_opts.ospace_resolution, ...
gvdm, rec_opts.ospace_oversize, rec_opts.max_grid_edge_points);
if (do_plot)
% ospace_bb = [min(gvdm, [], 2) - 0.002, max(gvdm, [], 2) + 0.002];
% sampler.make_grid('cubic', 3, ospace_bb, rec_opts.ospace_oversize);
scatter3(ax, sampler.R_vectors{1}(:, 1), sampler.R_vectors{1}(:, 2), sampler.R_vectors{1}(:, 3), 20, 'g');
hold(ax, 'off')
drawnow();
end
if (rec_opts.ospace_super_sampling > 1)
sampler.make_supersampling_simple_grid([1 2 3], rec_opts.ospace_super_sampling);
% ref_gr = sampler.get_reference_grain();
% proj = ref_gr.proj(det_index);
%
% spacing = mean([proj.vol_size_y, proj.vol_size_x, proj.vol_size_z]) * (rec_opts.rspace_oversize - 1);
% volume_size = ceil([proj.vol_size_y, proj.vol_size_x, proj.vol_size_z] + spacing);
%
% if (rec_opts.volume_downscaling > 1)
% volume_size = ceil(volume_size / rec_opts.volume_downscaling);
% end
%
% r_voxsize = test_data.parameters.recgeo(det_index).voxsize * rec_opts.volume_downscaling;
% half_volume_size = (volume_size - 1) / 2 .* r_voxsize;
% rspace_grid_points = [ref_gr.center - half_volume_size, ref_gr.center + half_volume_size, r_voxsize];
%
% odf_6D = gtGetODF6DFromGvdm(gvdm, gvcs, sampler.lattice.gr, rspace_grid_points, gvpow, 'linear');
%
% vols_6D = reshape(permute(odf_6D, [4 5 6 1 2 3]), volume_size(1), volume_size(2), volume_size(3), []);
% vols_6D = single(vols_6D);
% vols = cell(size(vols_6D, 4), 1);
% for ii_v = 1:size(vols_6D, 4)
% vols{ii_v} = vols_6D(:, :, :, ii_v);
% end
Nicola Vigano
committed
algo = gtReconstruct6DLaunchAlgorithm(sampler, rec_opts, ...
test_data.parameters, 'det_index', det_index);
vols = algo.getCurrentSolution();
or_sizes = sampler.get_orientation_sampling_size();
[avg_R_vecs, avg_R_vecs_int, stddev_R_vecs] = sampler.getAverageOrientations(vols);
avg_R_vec = sampler.getAverageOrientation(vols);
s_g_odf = reshape(sampler.getODF(vols), or_sizes{1});
vol_size = size(avg_R_vecs_int);
shift = gtFwdSimComputeVolumeShifts(test_data.grain.proj(det_index(1)), test_data.parameters, vol_size);
[kam, gam] = gtDefComputeKernelAverageMisorientation(avg_R_vecs, avg_R_vecs_int);
[igm, gos] = gtDefComputeIntraGranularMisorientation(avg_R_vecs, avg_R_vecs_int, 'R_vector', test_data.grain.R_vector);
% Restoring initial volume size (depending on the rounding)
if (rec_opts.volume_downscaling > 1)
fprintf('Expanding volumes..')
c = tic();
avg_R_vecs_int = gtMathsUpsampleVolume(avg_R_vecs_int, rec_opts.volume_downscaling);
avg_R_vecs = gtMathsUpsampleVolume(avg_R_vecs, rec_opts.volume_downscaling);
stddev_R_vecs = gtMathsUpsampleVolume(stddev_R_vecs, rec_opts.volume_downscaling);
kam = gtMathsUpsampleVolume(kam, rec_opts.volume_downscaling);
igm = gtMathsUpsampleVolume(igm, rec_opts.volume_downscaling);
vols = gtMathsUpsampleVolume(vols, rec_opts.volume_downscaling);
fprintf('\b\b: Done (%f seconds).\n', toc(c))
end
result = gt6DAssembleResult(test_data, sampler, vols);
result.ODF6D = struct( ...
'voxels_avg_R_vectors', {avg_R_vecs}, ...
'intensity', {avg_R_vecs_int}, ...
'shift', {shift}, ...
'R_vectors', {sampler.get_R_vectors()}, ...
'voxels_stddev_R_vectors', {stddev_R_vecs}, ...
'single_grain_ODF', {s_g_odf}, ...
'single_grain_avg_R_vector', {avg_R_vec}, ...
'kernel_average_misorientation', {kam}, ...
'intra_granular_misorientation', {igm} );
post_result = gt6DPostProcessOrientationSpread(test_data, result, true);
[proj_blobs, proj_spots] = algo.getProjectionOfCurrentSolution();
post_result.ODF6D = struct( ...
'orientation_volumes', {vols}, ...
'fwd_projected_blobs', {proj_blobs}, ...
'fwd_projected_spots', {proj_spots}, ...
'grain_average_misorientation', {gam}, ...
'grain_orientation_spread', {gos}, ...
'compute_statistics', {algo.get_statistics()} );
Nicola Vigano
committed
result_viewer = GtOrientationResultView(test_data, result, post_result, ...
'f_title', sprintf('Result Browser: algo "%s", det_id:%s"', ...
test_data.parameters.rec.grains.algorithm, sprintf(' %d', det_index)));