Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
function [fams_ints, fams_ints_raw, usable, fams_counts, gr_vols] = gtCrystComputeExperimentalFamilyIntensities_v2(phase_id, p, det_ind, varargin)
% FUNCTION GTCRYSTCOMPUTEEXPERIMENTALFAMILYINTENSITIES_V2
% [fams_ints, fams_intsp, usable, fams_counts] = gtCrystComputeExperimentalFamilyIntensities_v2(phase_id, p, det_ind, varargin)
% INPUTS:
% phase_id = <int> Phase ID. The default is 1.
% p = <struct> The parameter structure.
% det_ind = <int> Detector index. The default is 1.
% OPTIONAL INPUTS:
% only_selected = <bool> If true, only selected spots will be
% considered. (The default is false)
% deselect_annealing_twin_shared_spots
% = <bool> If true, the spots shared by
% annealing twins will be deselected.
%
% 06-09-2021 by Zheheng. (based on Nicola's function gtCrystComputeExperimentalFamilyIntensities)
if (~exist('phase_id', 'var') || isempty(phase_id))
phase_id = 1;
end
if (~exist('p', 'var') || isempty(p))
p = gtLoadParameters();
end
if (~exist('det_ind', 'var') || isempty(det_ind))
det_ind = 1;
end
conf = struct(...
'fams_ints_norm', 1, ... % 0 and 1 are median, 2 is average
'use_nullspace', true, ...
'only_selected', true, ... % To use included spots or only use selected spots
'use_spot2grain', true, ... % deselect the shared spots indicated by spot2grain.mat
'mu_att', [], ... % 32.2686 cm^-1 43.57keV Ni
'verbose', false, ...
'flat_image', [], ...
'gr_ids', [], ...
'usedfam', [], ...
'fams_counts_thres', 4, ...
'abs_vol', []);
conf = parse_pv_pairs(conf, varargin);
conf.mu_att = conf.mu_att * p.acq(det_ind).pixelsize * 0.1; % transform unit from per cm to per pixel: mu(cm^-1)*pixelsize(mm/pixel)*0.1(cm/mm)=mu_att_pixel(pixel^-1)
sample = GtSample.loadFromFile();
tot_grains = sample.phases{phase_id}.getNumberOfGrains();
if isempty(conf.gr_ids)
num_grains = max(tot_grains - 100, round(tot_grains * 0.9));
conf.gr_ids = 1:num_grains;
else
num_grains = numel(conf.gr_ids);
end
% if conf.deselect_annealing_twin_shared_spots
% clusters = sfTwinClusters(conf.gr_ids, tot_grains, sample.phases{phase_id}.clusters);
% else
% clusters = num2cell(conf.gr_ids);
% end
fams_ints = nan(num_grains, numel(p.cryst(phase_id).int));
fams_counts = zeros(num_grains, numel(p.cryst(phase_id).int));
if det_ind > 1
conf.use_spot2grain = false;
end
if conf.use_spot2grain
spot2grain = load('4_grains/spot2grain.mat');
spot2grain = spot2grain.spot2grain;
end
gauge = GtGauge(num_grains, 'Loading info: ');
c = tic();
for ii_g = 1:num_grains
gr_id = conf.gr_ids(ii_g);
if sample.phases{phase_id}.selectedGrains(gr_id)
gr = gtLoadGrain(phase_id, gr_id);
gr = gtCalculateGrain(gr, p);
if conf.only_selected
selected = gr.proj(det_ind).selected;
else
selected = true(size(gr.proj(det_ind).included));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calculate the average blob intensity of each family of each
% grain: fams_ints
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
gauge.incrementAndDisplay()
% Working around the fact that we initially implemented a wrong
% formula from Henning's book
if (isfield(gr.proj, 'ondet'))
included = gr.proj(det_ind).ondet(gr.proj(det_ind).included);
else
included = gr.ondet(grs(ii_g).included);
end
bl_ints = arrayfun(@(x) x.intensity, gr.proj(det_ind).bl);
bl_ints = reshape(bl_ints, size(included));
not_nan = ~isnan(bl_ints);
if conf.use_spot2grain
% not using shared spots
to_use = cellfun(@(x) numel(x) == 1, spot2grain(gr.difspotID));
to_use = to_use & selected & not_nan;
else
to_use = selected & not_nan;
end
inc_good = included(to_use);
L_fac = gr.allblobs(det_ind).lorentzfac(inc_good) ./ sind(2 * gr.allblobs(det_ind).theta(inc_good)); % Lorentz factor
P_fac = 1 - (sind(2 * gr.allblobs(det_ind).theta(inc_good)) .* sind(gr.allblobs(det_ind).eta(inc_good))) .^ 2; % polarization factor
theta_types = gr.allblobs(det_ind).thetatype(inc_good);
if isempty(conf.abs_vol)
[atts_tot, ~, conf.abs_vol] = gtGrainComputeBeamAttenuation(gr, p, det_ind, []);
else
atts_tot = gtGrainComputeBeamAttenuation(gr, p, det_ind, conf.abs_vol);
end
if isempty(conf.flat_image)
[beam_ints, conf.flat_image] = gtGrainComputeIncomingBeamIntensity(gr, p, det_ind);
else
beam_ints = gtGrainComputeIncomingBeamIntensity(gr, p, det_ind, conf.flat_image);
end
ints = bl_ints(to_use) ./ L_fac ./ atts_tot(to_use) ./ beam_ints(to_use) ./ P_fac;
fams_temp_counts = accumarray(theta_types, ones(size(theta_types)), [numel(p.cryst(phase_id).int), 1]);
if conf.fams_ints_norm == 2
fams_temp_ints = accumarray(theta_types, ints, [numel(p.cryst(phase_id).int), 1]);
fams_temp_ints = fams_temp_ints ./ (fams_temp_counts + (fams_temp_counts == 0));
else
fams_temp_ints = sfCalcMedianInts(theta_types, ints, [numel(p.cryst(phase_id).int), 1]);
end
fams_ints(ii_g, fams_temp_counts > 0) = fams_temp_ints(fams_temp_counts > 0);
fams_counts(ii_g, :) = fams_temp_counts;
end
end
fprintf('Done in %f seconds.\n', toc(c))
usable = fams_counts > 0;
fams_ints_raw = fams_ints;
if ~isempty(conf.usedfam)
usedfam = false(size(p.cryst.int));
usedfam(conf.usedfam) = true;
fams_ints(:, ~usedfam) = nan;
end
conf.fams_counts_thres = min(conf.fams_counts_thres, max(fams_counts, [], 1));
usedfamsints = bsxfun(@ge, fams_counts, conf.fams_counts_thres);
fams_ints(~usedfamsints) = nan;
[fams_ints, gr_vols] = gtMathsEstimateCoefVecFromIncompDataMatByNullSpace(fams_ints');
% fams_ints contain 1/sin(2theta), which is part of Lorentz factor.
fams_ints = fams_ints' ./ sind(2 * p.cryst(phase_id).theta(1:numel(fams_ints)));
fprintf('Theoretical Intensities:\n');
disp(p.cryst(phase_id).int / norm(p.cryst(phase_id).int));
fprintf('Calculated Intensities:\n');
disp(fams_ints);
end
function fams_temp_ints = sfCalcMedianInts(thetatype, ints, fams_size)
fams_temp_ints = zeros(fams_size);
for ii_th = 1:numel(fams_temp_ints)
theta_inds = (thetatype == ii_th);
if any(theta_inds)
fams_temp_ints(ii_th) = median(ints(theta_inds));
end
end
end