Newer
Older
function grain = gtCalculateGrain(grain, parameters, varargin)
% GTCALCULATEGRAIN Calulate diffraction vectors and detector intersection points
%
% grain = gtCalculateGrain(grain, parameters, varargin)
% ----------------------------------------------------------
% Input and output arguments description, variable type (in <>) and default value (in {}) are written below.
%
%
% INPUT:
%
% grain = grain of interest (<struct>)
% parameters = parameters file (<struct> {parameters.mat})
% varargin = optional arguments list given by pairs
%
%
% OPTIONAL INPUT (as a list of pairs):
%
% showfigure = show or not the figure (<logical> {0})
% color = show or not the prediction spot positions coloured as
% omega (<logical> {0})
% axis = plot axis, image reference and beam direction in the
% image (<logical> {0})
% overlay = difspots image output from "gtPlaceDifspotinFull" (<double MxM>)
% M is the size of the overlay image (typically 2048)
% Markersize = marker size (<double> {15})
% Grayscale = scale of grays (<double 1x2> {[-300 500]})
%
%
% OUTPUT:
%
% grain = grain of interest (<struct>)
% added fields:
% - pllab <double Nx3>
% - hklsp <double Nx3>
% - dvec <double Nx3>
% - allblobs <struct>
%
% updated fields:
% - thetatype <double Nx1>
% - hkl <double Nx3>
% - pl <double Nx3>
% - theta <double Nx1>
% - eta <double Nx1>
% - omega <double Nx1>
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
%
% Simplified version of gtFedGenerateRandomGrain 15-03-2012 - WLudwig
%
%
% FUNCTIONS USED:
%[use]- gtConvEnergyToWavelength
%[use]- gtCrystSpacegroupReflections
%[use]- gtCrystSignedHKLs
%[use]- gtHKL2Cart
%[use]- gtFedDetectorProjectionTensor
%[use]- gtFedRotationMatrixComp
%[use]- gtFedPredictOmega
%[use]- gtFedRotationTensor
%[use]- gtFedPredictDiffVec
%[use]- gtMatchEtaOfPoint
%[use]- gtFedPredictUVW
%% set default values for optional arguments
app.color = 0;
app.showfigure = 0;
app.axis = 0;
app.Markersize = 15;
app.Grayscale = [-300 500];
app.overlay = zeros(parameters.acq.ydet, parameters.acq.xdet);
app = parse_pv_pairs(app,varargin);
disp('Initial settings')
disp(app)
if nargin < 1
disp('Usage: grain = gtCalculateGrain(grain, parameters, varargin)')
disp(' grain = grain{grainid}')
disp(' parameters = parameters file')
return
end
if ~exist('parameters','var') || isempty(parameters)
parameters=load('parameters.mat');
end
% Rodrigues vector (grain orientation)
Rvec = grain.R_vector;
disp(['grain.center: ' num2str(grain.center)]);
acq = parameters.acq;
Wolfgang Ludwig
committed
cryst = parameters.cryst(phase);
labgeo = parameters.labgeo;
samgeo = parameters.samgeo;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Detector geometry
beamdir = labgeo.beamdir';
rotdir = labgeo.rotdir';
detdiru = labgeo.detdiru';
detdirv = labgeo.detdirv';
Qdet = gtFedDetectorProjectionTensor(detdiru,detdirv,1,1);
tn = cross(detdiru,detdirv);
detpos = (labgeo.detrefpos./acq.pixelsize)';
uvorig = [labgeo.detrefu, labgeo.detrefv]';
Wolfgang Ludwig
committed
csam = grain.center' / acq.pixelsize;
omstep = 180/acq.nproj;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Crystallography from parameters file
lambda = gtConvEnergyToWavelength(acq.energy);
hklsp = cryst.hklsp;
d0 = cryst.dspacingsp;
thetasp = cryst.thetasp;
hklt = cryst.hkl;
thetatypesp = cryst.thetatypesp;
disp('Translating Miller indices into normalized cartesian coordinates for plane normals')
Bmat = gtCrystHKL2CartesianMatrix(cryst.latticepar);
for ii = 1:size(hklsp,2)
%pl0(i, :) = gtHKL2Cart(hklsp(:, i)', cryst);
% !!! should be changed to:
pl0(ii, :) = gtCrystHKL2Cartesian(hklsp(:, ii), Bmat)';
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
end
gg0 = Rod2g(Rvec); % gg0 is the transformation tensor from SAMPLE TO CRYSTAL coordinates (Rotation)
pl_g=(gg0*pl0')'; % Plane normals in SAMPLE coord. rotated with gg0:
%% Initialse output variables
grain.allblobs.pl = [];
grain.allblobs.pllab = [];
grain.allblobs.hkl = [];
grain.allblobs.hklsp = [];
grain.allblobs.thetatype = [];
grain.allblobs.theta = [];
grain.allblobs.eta = [];
grain.allblobs.omega = [];
grain.allblobs.dvec = [];
grain.allblobs.uv = [];
grain.allblobs.uvw = [];
grain.allblobs.srot = [];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Compute diffraction angles and detector intersection points
rotcomp = gtFedRotationMatrixComp(rotdir);
%hkl(i,:) = hklt(thetatypesp(i),:);
hkl(:,ii) = hklt(:,thetatypesp(ii))';
pl = pl_g(ii,:)';
sinth = sind(thetasp(ii));
% Four omegas of the plane normal (1-3 and 2-4 are the two Friedel pairs):
% pls is plus or minus pl
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
[om,pllab,pls] = gtFedPredictOmega(pl, sinth, beamdir, rotdir, rotcomp);
% If reflection occurs
if ~isempty(om)
% Rotation tensors from omegas (one for each of the two Friedel pairs)
S1 = gtFedRotationTensor(om(1), rotcomp);
S2 = gtFedRotationTensor(om(2), rotcomp);
S3 = gtFedRotationTensor(om(3), rotcomp);
S4 = gtFedRotationTensor(om(4), rotcomp);
% Diffraction vectors
d1 = gtFedPredictDiffVec(pllab(:,1), sinth, beamdir); % takes coloumn vectors
d2 = gtFedPredictDiffVec(pllab(:,2), sinth, beamdir);
d3 = gtFedPredictDiffVec(pllab(:,3), sinth, beamdir);
d4 = gtFedPredictDiffVec(pllab(:,4), sinth, beamdir);
% Normalize vectors
d1 = d1/norm(d1);
d2 = d2/norm(d2);
d3 = d3/norm(d3);
d4 = d4/norm(d4);
% Following the convention of the mathcing output, the omega value
% smaller than 180deg (spot "a") is used in the pair data.
% The two Friedel pairs are 1a-1b and 2a-2b.
if om(1) < om(3)
om1a = om(1);
s1a = S1;
s1b = S3;
om1b = om(3);
pl1a = pls(:,1)';
pl1b = pls(:,3)';
pllab1a = pllab(:,1)';
pllab1b = pllab(:,3)';
d1a = d1';
d1b = d3';
else
om1a = om(3);
s1a = S3;
s1b = S1;
om1b = om(1);
pl1a = pls(:,3)';
pl1b = pls(:,1)';
pllab1a = pllab(:,3)';
pllab1b = pllab(:,1)';
d1a = d3';
d1b = d1';
end
if om(2) < om(4)
om2a = om(2);
om2b = om(4);
s2a = S2;
s2b = S4;
pl2a = pls(:,2)';
pl2b = pls(:,4)';
pllab2a = pllab(:,2)';
pllab2b = pllab(:,4)';
d2a = d2';
d2b = d4';
else
om2a = om(4);
om2b = om(2);
s2a = S4;
s2b = S2;
pl2a = pls(:,4)';
pl2b = pls(:,2)';
pllab2a = pllab(:,4)';
pllab2b = pllab(:,2)';
d2a = d4';
d2b = d2';
end
% Eta angles
eta1a = gtMatchEtaOfPoint(d1a); % takes row vector
eta1b = gtMatchEtaOfPoint(d1b);
eta2a = gtMatchEtaOfPoint(d2a);
eta2b = gtMatchEtaOfPoint(d2b);
% u,v coordinates on the detector
uv1a=gtFedPredictUVW(s1a,d1a',csam,detpos,tn,Qdet,uvorig,om1a,omstep);
uv1b=gtFedPredictUVW(s1b,d1b',csam,detpos,tn,Qdet,uvorig,om1b,omstep);
uv2a=gtFedPredictUVW(s2a,d2a',csam,detpos,tn,Qdet,uvorig,om2a,omstep);
uv2b=gtFedPredictUVW(s2b,d2b',csam,detpos,tn,Qdet,uvorig,om2b,omstep);
if isempty(uv1a)
uv1a = NaN(3,1);
end
if isempty(uv1b)
uv1b = NaN(3,1);
end
if isempty(uv2a)
uv2a = NaN(3,1);
end
if isempty(uv2b)
uv2b = NaN(3,1);
end
% fill the output structure with the two pairs
grain.allblobs.pl = [grain.allblobs.pl; pl1a; pl1b; pl2a; pl2b];
grain.allblobs.pllab = [grain.allblobs.pllab; pllab1a; pllab1b; pllab2a; pllab2b];
grain.allblobs.hkl = [grain.allblobs.hkl; hkl(:,ii)'; hkl(:,ii)'; hkl(:,ii)'; hkl(:,ii)'];
grain.allblobs.hklsp = [grain.allblobs.hklsp; hklsp(:,ii)'; -hklsp(:,ii)'; hklsp(:,ii)'; -hklsp(:,ii)'];
grain.allblobs.theta = [grain.allblobs.theta; thetasp(ii); thetasp(ii); thetasp(ii); thetasp(ii)];
grain.allblobs.thetatype = [grain.allblobs.thetatype; thetatypesp(ii); thetatypesp(ii); thetatypesp(ii); thetatypesp(ii)];
grain.allblobs.eta = [grain.allblobs.eta; eta1a; eta1b; eta2a; eta2b];
grain.allblobs.omega = [grain.allblobs.omega; om1a; om1b; om2a; om2b];
grain.allblobs.dvec = [grain.allblobs.dvec; d1a; d1b; d2a; d2b];
grain.allblobs.uv = [grain.allblobs.uv;uv1a(1),uv1a(2);uv1b(1),uv1b(2);uv2a(1),uv2a(2);uv2b(1),uv2b(2)];
grain.allblobs.uvw = [grain.allblobs.uvw;uv1a(1),uv1a(2),uv1a(3);uv1b(1),uv1b(2),uv1b(3);uv2a(1),uv2a(2),uv2a(3);uv2b(1),uv2b(2),uv2b(3)];
grain.allblobs.srot = [grain.allblobs.srot; s1a; s1b; s2a; s2b];
end % end if ~empty(om)
end % end for pl_g
if app.showfigure
figure
imshow(app.overlay, app.Grayscale);
if app.axis
detusize=acq.xdet;
detvsize=acq.ydet;
% Image frame
plot([0 detusize+1],[0 0],'k')
plot([0 detusize+1],[detvsize+1 detvsize+1],'k')
plot([0 0],[0 detvsize+1],'k')
plot([detusize+1 detusize+1],[0 detvsize+1],'k')
% Midlines
plot([0 detusize+1],[detvsize/2+0.5 detvsize/2+0.5],'-.k')
plot([detusize/2+0.5 detusize/2+0.5],[0 detvsize+1],'-.k')
% Set figure propeties
axis equal
set(gca,'YDir','reverse')
set(gca,'Position',[0.05 0.05 0.95 0.9])
xlim([-detusize*0.1 detusize*1.1])
ylim([-detvsize*0.1 detvsize*1.1])
xlabel('U direction')
ylabel('V direction')
% Beam direction in image
beamuv = Qdet*beamdir;
% Arrow in figure indicating beam direction
quiver(uvorig(1),uvorig(2),beamuv(1),beamuv(2),1000,'-k','Linewidth',3)
% Rotation axis direction in image
rotuv = Qdet*rotdir;
% Arrow in figure indicating rotation axis direction
quiver(uvorig(1),uvorig(2),rotuv(1),rotuv(2),1000,'-.k','Linewidth',3)
end
impixelinfo
om = grain.allblobs.omega;
uv = grain.allblobs.uv;
cmap = jet(1001);
omtoRGB = @(om) cmap(round((om)/(360)*1000+1),:);
if app.color
colormap(cmap)
colorbar
caxis([0 360])
else
colormap(gray);
end
for ii = 1 : length(uv)
if ~isempty(uv(ii,1)) % there might be no intersection when using offaxis detector configurations (vertical)
if app.color
plot(uv(ii,1),uv(ii,2),'or','MarkerSize',app.Markersize,'MarkerEdgeColor',omtoRGB(om(ii)));
else
plot(uv(ii,1),uv(ii,2),'ob','MarkerSize',app.Markersize);
end
end
end
end % showfigure
end