Newer
Older
function gtReconstructGrainCluster(grain_ids, phase_id, parameters, varargin)
% gtReconstructGrainOrientation 6D reconstructions on a GPU machine
% gtAstraReconstructGrain(grainIDs, phaseID, [parameters])
% -------------------------------------------------------
if (~exist('parameters', 'var') || isempty(parameters))
parameters = gtLoadParameters();
end
parameters.fsim.check_spot = false;
rec_opts = gtReconstruct6DGetParamenters(parameters);
phase_dir = fullfile(parameters.acq.dir, '4_grains', ...
sprintf('phase_%02d', phase_id));
grains_str_ids = sprintf('_%04d', grain_ids);
grain_cluster_file = fullfile(phase_dir, ...
sprintf('grain_cluster%s.mat', grains_str_ids));
if (~exist(grain_cluster_file, 'file'))
Nicola Vigano
committed
grs = [];
for ii_g = numel(grain_ids):-1:1
grain_id = grain_ids(ii_g);
grs(ii_g) = gtForwardSimulate_v2(grain_id, grain_id, ...
pwd, phase_id, 'save_grain', false, 'display_figure', false);
end
Nicola Vigano
committed
[proj, gr, bb_ors] = gt6DCreateProjDataFromGrainCluster(grs, phase_id, varargin);
gr.proj = proj;
gr.bb_ors = bb_ors;
fprintf('Saving the cluster file..')
save(grain_cluster_file, '-struct', 'gr', '-v7.3');
fprintf('\b\b: Done.\n')
else
fprintf('Loading the cluster file..')
gr = load(grain_cluster_file);
bb_ors = gr.bb_ors;
end
bb_gvdm = cat(1, bb_ors(:).R_vector)';
sampler = GtOrientationSampling(parameters, gr);
Nicola Vigano
committed
% sampler.make_simple_grid('cubic', rec_opts.grid_edge, bb_gvdm, 1);
sampler.make_even_simple_grid('cubic', rec_opts.grid_edge, bb_gvdm, 1)
if (rec_opts.super_sampling > 1)
sampler.make_supersampling_simple_grid([1 2 3], rec_opts.super_sampling);
[algo, good_or] = gtReconstruct6DLaunchAlgorithm(sampler, rec_opts, parameters);
vols = algo.getCurrentSolution();
% Restoring initial volume size (depending on the rounding)
if (rec_opts.volume_downscaling > 1)
fprintf('Expanding volumes..')
c = tic();
vols = gtMathsUpsampleVolume(vols, rec_opts.volume_downscaling);
end
[avg_R_vecs, avg_R_vecs_int] = sampler.getAverageOrientations(vols, good_or);
avg_R_vec = sampler.getAverageOrientation(vols, good_or);
s_g_odf = reshape(sampler.getODF(vols, good_or), rec_opts.grid_edge([1 1 1]));
vol_size = size(avg_R_vecs_int);
shift = gtFwdSimComputeVolumeShifts(gr.proj, parameters, vol_size);
[kam, gam] = gtDefComputeKernelAverageMisorientation(avg_R_vecs, avg_R_vecs_int);
[igm, gos] = gtDefComputeIntraGranularMisorientation(avg_R_vecs, avg_R_vecs_int, 'R_vector', gr.R_vector);
ODF6D = struct( ...
'voxels_avg_R_vectors', {avg_R_vecs}, ...
'intensity', {avg_R_vecs_int}, ...
'shift', {shift}, ...
'R_vectors', {sampler.get_R_vectors()}, ...
'single_grain_ODF', {s_g_odf}, ...
'single_grain_avg_R_vector', {avg_R_vec}, ...
'kernel_average_misorientation', {kam}, ...
'intra_granular_misorientation', {igm} ); %#ok<NASGU>
cluster_rec_file = fullfile(phase_dir, ...
sprintf('grain_cluster_details%s.mat', grains_str_ids));
% Saving and cleaning at the same time
if (exist(cluster_rec_file, 'file'))
cl_rec = load(cluster_rec_file);
cl_rec.ODF6D = ODF6D;
else
cl_rec = struct('ODF6D', ODF6D); %#ok<NASGU>
end
save(cluster_rec_file, '-struct', 'cl_rec', '-v7.3');
if (algo.verbose)
[proj_blobs, proj_spots] = algo.getProjectionOfCurrentSolution();
ODF6D = struct( ...
'orientation_volumes', {vols}, ...
'fwd_projected_blobs', {proj_blobs}, ...
'fwd_projected_spots', {proj_spots}, ...
'grain_average_misorientation', {gam}, ...
'grain_orientation_spread', {gos}, ...
'compute_statistics', {algo.get_statistics()} ); %#ok<NASGU>
grain_full_details_file = fullfile(phase_dir, ...
sprintf('grain_cluster_full_details%s.mat', grains_str_ids));
save(grain_full_details_file, 'ODF6D', '-v7.3');
end
end