Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
tomotools
Nabu
Commits
91565f40
Commit
91565f40
authored
Jun 23, 2022
by
Pierre Paleo
Browse files
Merge branch 'master' into 'option_near_tafforensis'
# Conflicts: # nabu/__init__.py
parents
f6f5ecfe
bdade8fb
Pipeline
#78328
passed with stage
in 7 minutes and 34 seconds
Changes
5
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
nabu/cuda/processing.py
View file @
91565f40
...
...
@@ -79,7 +79,7 @@ class CudaProcessing:
List of array names
"""
for
array_name
in
arrays_names
:
old_arr
=
getattr
(
self
,
"_old_"
+
array_name
)
old_arr
=
getattr
(
self
,
"_old_"
+
array_name
,
None
)
if
old_arr
is
not
None
:
setattr
(
self
,
array_name
,
old_arr
)
...
...
@@ -121,17 +121,37 @@ class CudaProcessing:
Data type. Default is float32.
"""
if
isinstance
(
array_ref
,
garray
.
GPUArray
):
current_arr
=
getattr
(
self
,
array_name
)
current_arr
=
getattr
(
self
,
array_name
,
None
)
setattr
(
self
,
"_old_"
+
array_name
,
current_arr
)
setattr
(
self
,
array_name
,
array_ref
)
elif
isinstance
(
array_ref
,
np
.
ndarray
):
self
.
_
allocate_array
(
array_name
,
shape
,
dtype
=
dtype
)
self
.
allocate_array
(
array_name
,
shape
,
dtype
=
dtype
)
getattr
(
self
,
array_name
).
set
(
array_ref
)
else
:
raise
ValueError
(
"Expected numpy array or pycuda array"
)
def
get_array
(
self
,
array_name
):
return
getattr
(
self
,
array_name
,
None
)
# COMPAT.
_init_arrays_to_none
=
init_arrays_to_none
_recover_arrays_references
=
recover_arrays_references
_allocate_array
=
allocate_array
_set_array
=
set_array
@
staticmethod
def
check_array
(
arr
,
expected_shape
,
expected_dtype
=
"f"
,
check_contiguous
=
True
):
"""
Check whether a given array is suitable for being processed (shape, dtype, contiguous)
"""
if
arr
.
shape
!=
expected_shape
:
raise
ValueError
(
"Expected shape %s but got %s"
%
(
str
(
expected_shape
),
str
(
arr
.
shape
)))
if
arr
.
dtype
!=
np
.
dtype
(
expected_dtype
):
raise
ValueError
(
"Expected data type %s but got %s"
%
(
str
(
expected_dtype
),
str
(
arr
.
dtype
)))
if
check_contiguous
:
if
isinstance
(
arr
,
np
.
ndarray
)
and
not
(
arr
.
flags
[
"C_CONTIGUOUS"
]):
raise
ValueError
(
"Expected C-contiguous array"
)
if
isinstance
(
arr
,
garray
.
GPUArray
)
and
not
arr
.
flags
.
c_contiguous
:
raise
ValueError
(
"Expected C-contiguous array"
)
nabu/reconstruction/cone.py
0 → 100644
View file @
91565f40
import
numpy
as
np
try
:
import
astra
__have_astra__
=
True
except
ImportError
:
__have_astra__
=
False
from
..cuda.processing
import
CudaProcessing
class
ConebeamReconstructor
:
"""
A reconstructor for cone-beam geometry using the astra toolbox.
"""
def
__init__
(
self
,
sinos_shape
,
source_origin_dist
,
angles
=
None
,
volume_shape
=
None
,
rot_center
=
None
,
relative_z_position
=
None
,
cuda_options
=
None
,
):
"""
Initialize a cone beam reconstructor. This reconstructor works on slabs of data,
meaning that one partial volume is obtained from one stack of sinograms.
To reconstruct a full volume, the reconstructor must be called on a series of sinograms stacks, with
an updated "relative_z_position" each time.
Parameters
-----------
sinos_shape: tuple
Shape of the sinograms stack, in the form (n_angles, n_y, n_x).
source_origin_dist: float
Distance, in pixel units, between the beam source (cone apex) and the "origin".
The origin is defined as the center of the sample
angles: array, optional
Rotation angles in radians. If provided, its length should be equal to sinos_shape[0].
volume_shape: tuple of int, optional
Shape of the output volume slab, in the form (n_z, n_y, n_x).
If not provided, the output volume slab shape is (sinos_shape[0], sinos_shape[2], sinos_shape[2]).
rot_center: float, optional
Rotation axis position. Default is `(detector_width - 1)/2.0`
relative_z_position: float, optional
Position of the central slice of the slab, with respect to the full stack of slices.
By default it is set to zero, meaning that the current slab is assumed in the middle of the stack
Notes
-----
This reconstructor is using the astra toolbox [1]. Therefore the implementation uses Astra's
reference frame, which is centered on the sample (source and detector move around the sample).
For more information see Fig. 2 of paper [1].
References
-----------
[1] Aarle, Wim & Palenstijn, Willem & Cant, Jeroen & Janssens, Eline & Bleichrodt,
Folkert & Dabravolski, Andrei & De Beenhouwer, Jan & Batenburg, Kees & Sijbers, Jan. (2016).
Fast and flexible X-ray tomography using the ASTRA toolbox.
Optics Express. 24. 25129-25147. 10.1364/OE.24.025129.
"""
self
.
_init_cuda
(
cuda_options
)
self
.
_init_geometry
(
sinos_shape
,
source_origin_dist
,
angles
,
volume_shape
,
rot_center
,
relative_z_position
,
)
self
.
_alg_id
=
None
self
.
_vol_id
=
None
self
.
_proj_id
=
None
def
_init_cuda
(
self
,
cuda_options
):
cuda_options
=
cuda_options
or
{}
self
.
cuda
=
CudaProcessing
(
**
cuda_options
)
def
_set_sino_shape
(
self
,
sinos_shape
):
if
len
(
sinos_shape
)
!=
3
:
raise
ValueError
(
"Expected a 3D shape"
)
self
.
sinos_shape
=
sinos_shape
self
.
n_sinos
,
self
.
n_angles
,
self
.
prj_width
=
sinos_shape
def
_init_geometry
(
self
,
sinos_shape
,
source_origin_dist
,
angles
,
volume_shape
,
rot_center
,
relative_z_position
):
self
.
_set_sino_shape
(
sinos_shape
)
if
angles
is
None
:
self
.
angles
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
self
.
n_angles
,
endpoint
=
True
)
else
:
self
.
angles
=
angles
if
volume_shape
is
None
:
volume_shape
=
(
self
.
sinos_shape
[
0
],
self
.
sinos_shape
[
2
],
self
.
sinos_shape
[
2
])
self
.
volume_shape
=
volume_shape
self
.
n_z
,
self
.
n_y
,
self
.
n_x
=
self
.
volume_shape
self
.
source_origin_dist
=
source_origin_dist
self
.
vol_geom
=
astra
.
create_vol_geom
(
self
.
n_y
,
self
.
n_x
,
self
.
n_z
)
self
.
vol_shape
=
astra
.
geom_size
(
self
.
vol_geom
)
self
.
_cor_shift
=
0.0
self
.
rot_center
=
rot_center
if
rot_center
is
not
None
:
self
.
_cor_shift
=
(
self
.
prj_width
-
1
)
/
2.0
-
rot_center
self
.
_create_astra_proj_geometry
(
relative_z_position
)
def
_create_astra_proj_geometry
(
self
,
relative_z_position
):
# This object has to be re-created each time, because once the modifications below are done,
# it is no more a "cone" geometry but a "cone_vec" geometry, and cannot be updated subsequently
# (see astra/functions.py:271)
self
.
proj_geom
=
astra
.
create_proj_geom
(
"cone"
,
# detector spacing in each dimension.
# Normalized to 1, so source_origin and origin_dest have to be put wrt this unit
1.0
,
1.0
,
self
.
n_sinos
,
self
.
prj_width
,
self
.
angles
,
self
.
source_origin_dist
,
0.0
,
)
self
.
relative_z_position
=
relative_z_position
or
0.0
self
.
proj_geom
=
astra
.
geom_postalignment
(
self
.
proj_geom
,
(
self
.
_cor_shift
,
self
.
relative_z_position
))
# Component 2 of vecs is the z coordinate of the source, component 5 is the z component of the detector position
# We need to re-create the same inclination of the cone beam, thus we need to keep the inclination of the two z positions.
# The detector is centered on the rotation axis, thus moving it up or down, just moves it out of the reconstruction volume.
# We can bring back the detector in the correct volume position, by applying a rigid translation of both the detector and the source.
# The translation is exactly the amount that brought the detector up or down, but in the opposite direction.
vecs
=
self
.
proj_geom
[
"Vectors"
]
vecs
[:,
2
]
=
-
vecs
[:,
5
]
vecs
[:,
5
]
=
0.0
def
_set_output
(
self
,
volume
):
if
volume
is
not
None
:
self
.
cuda
.
check_array
(
volume
,
self
.
vol_shape
)
self
.
cuda
.
set_array
(
"output"
,
volume
,
self
.
vol_shape
)
if
volume
is
None
:
self
.
cuda
.
allocate_array
(
"output"
,
self
.
vol_shape
)
d_volume
=
self
.
cuda
.
get_array
(
"output"
)
z
,
y
,
x
=
d_volume
.
shape
self
.
_vol_link
=
astra
.
data3d
.
GPULink
(
d_volume
.
ptr
,
x
,
y
,
z
,
d_volume
.
strides
[
-
2
])
self
.
_vol_id
=
astra
.
data3d
.
link
(
"-vol"
,
self
.
vol_geom
,
self
.
_vol_link
)
def
_set_input
(
self
,
sinos
):
self
.
cuda
.
check_array
(
sinos
,
self
.
sinos_shape
)
self
.
cuda
.
set_array
(
"sinos"
,
sinos
,
sinos
.
shape
)
# self.cuda.sinos is now a GPU array
# TODO don't create new link/proj_id if ptr is the same ?
# But it seems Astra modifies the input sinogram while doing FDK, so this might be not relevant
d_sinos
=
self
.
cuda
.
get_array
(
"sinos"
)
self
.
_proj_data_link
=
astra
.
data3d
.
GPULink
(
d_sinos
.
ptr
,
self
.
prj_width
,
self
.
n_angles
,
self
.
n_z
,
sinos
.
strides
[
-
2
]
)
self
.
_proj_id
=
astra
.
data3d
.
link
(
"-sino"
,
self
.
proj_geom
,
self
.
_proj_data_link
)
def
_update_reconstruction
(
self
):
cfg
=
astra
.
astra_dict
(
"FDK_CUDA"
)
cfg
[
"ReconstructionDataId"
]
=
self
.
_vol_id
cfg
[
"ProjectionDataId"
]
=
self
.
_proj_id
# TODO more options "eg. filter" ?
if
self
.
_alg_id
is
not
None
:
astra
.
algorithm
.
delete
(
self
.
_alg_id
)
self
.
_alg_id
=
astra
.
algorithm
.
create
(
cfg
)
def
reconstruct
(
self
,
sinos
,
output
=
None
,
relative_z_position
=
None
):
"""
sinos: numpy.ndarray or pycuda.gpuarray
Sinograms, with shape (n_sinograms, n_angles, width)
output: pycuda.gpuarray, optional
Output array. If not provided, a new numpy array is returned
relative_z_position: int, optional
Position of the central slice of the slab, with respect to the full stack of slices.
By default it is set to zero, meaning that the current slab is assumed in the middle of the stack
"""
self
.
_create_astra_proj_geometry
(
relative_z_position
)
self
.
_set_input
(
sinos
)
self
.
_set_output
(
output
)
self
.
_update_reconstruction
()
astra
.
algorithm
.
run
(
self
.
_alg_id
)
result
=
self
.
cuda
.
get_array
(
"output"
)
if
output
is
None
:
result
=
result
.
get
()
self
.
cuda
.
recover_arrays_references
([
"sinos"
,
"output"
])
return
result
def
__del__
(
self
):
if
self
.
_alg_id
is
not
None
:
astra
.
algorithm
.
delete
(
self
.
_alg_id
)
if
self
.
_vol_id
is
not
None
:
astra
.
data3d
.
delete
(
self
.
_vol_id
)
if
self
.
_proj_id
is
not
None
:
astra
.
data3d
.
delete
(
self
.
_proj_id
)
nabu/reconstruction/tests/test_cone.py
0 → 100644
View file @
91565f40
import
pytest
import
numpy
as
np
from
scipy.ndimage
import
gaussian_filter
try
:
import
astra
__has_astra__
=
True
except
ImportError
:
__has_astra__
=
False
from
nabu.cuda.utils
import
__has_pycuda__
,
get_cuda_context
from
nabu.testutils
import
__do_large_mem_tests__
if
__has_pycuda__
:
from
nabu.reconstruction.cone
import
ConebeamReconstructor
from
nabu.utils
import
subdivide_into_overlapping_segment
@
pytest
.
fixture
(
scope
=
"class"
)
def
bootstrap
(
request
):
cls
=
request
.
cls
cls
.
vol_shape
=
(
128
,
126
,
126
)
cls
.
n_angles
=
180
cls
.
prj_width
=
192
# detector larger than the sample
cls
.
src_orig_dist
=
1000
cls
.
volume
,
cls
.
cone_data
=
generate_hollow_cube_cone_sinograms
(
cls
.
vol_shape
,
cls
.
n_angles
,
cls
.
src_orig_dist
,
prj_width
=
cls
.
prj_width
)
if
__has_pycuda__
:
cls
.
ctx
=
get_cuda_context
()
@
pytest
.
mark
.
skipif
(
not
(
__has_pycuda__
and
__has_astra__
),
reason
=
"Need pycuda and astra for this test"
)
@
pytest
.
mark
.
usefixtures
(
"bootstrap"
)
class
TestCone
:
def
_create_cone_reconstructor
(
self
,
relative_z_position
=
None
):
return
ConebeamReconstructor
(
self
.
cone_data
.
shape
,
self
.
src_orig_dist
,
relative_z_position
=
relative_z_position
,
volume_shape
=
self
.
volume
.
shape
,
cuda_options
=
{
"ctx"
:
self
.
ctx
},
)
def
test_simple_cone_reconstruction
(
self
):
C
=
self
.
_create_cone_reconstructor
()
res
=
C
.
reconstruct
(
self
.
cone_data
)
delta
=
np
.
abs
(
res
-
self
.
volume
)
# Can we do better ? We already had to lowpass-filter the volume!
# First/last slices are OK
assert
np
.
max
(
delta
[:
8
])
<
1e-5
assert
np
.
max
(
delta
[
-
8
:])
<
1e-5
# Middle region has a relatively low error
assert
np
.
max
(
delta
[
40
:
-
40
])
<
0.11
# Transition zones between "zero" and "cube" has a large error
assert
np
.
max
(
delta
[
10
:
25
])
<
0.3
assert
np
.
max
(
delta
[
-
25
:
-
10
])
<
0.3
# End of transition zones have a smaller error
np
.
max
(
delta
[
25
:
40
])
<
0.15
np
.
max
(
delta
[
-
40
:
-
25
])
<
0.15
def
test_against_explicit_astra_calls
(
self
):
C
=
self
.
_create_cone_reconstructor
()
res
=
C
.
reconstruct
(
self
.
cone_data
)
#
# Check that ConebeamReconstructor is consistent with these calls to astra
#
angles
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
self
.
n_angles
,
True
)
# "vol_geom" shape layout is (y, x, z). But here this geometry is used for the reconstruction
# (i.e sinogram -> volume)and not for projection (volume -> sinograms).
# So we assume a square slice. Mind that this is a particular case.
vol_geom
=
astra
.
create_vol_geom
(
self
.
vol_shape
[
2
],
self
.
vol_shape
[
2
],
self
.
vol_shape
[
0
])
proj_geom
=
astra
.
create_proj_geom
(
"cone"
,
1.0
,
1.0
,
self
.
cone_data
.
shape
[
0
],
self
.
prj_width
,
angles
,
self
.
src_orig_dist
,
0.0
)
sino_id
=
astra
.
data3d
.
create
(
"-sino"
,
proj_geom
,
data
=
self
.
cone_data
)
rec_id
=
astra
.
data3d
.
create
(
"-vol"
,
vol_geom
)
cfg
=
astra
.
astra_dict
(
"FDK_CUDA"
)
cfg
[
"ReconstructionDataId"
]
=
rec_id
cfg
[
"ProjectionDataId"
]
=
sino_id
alg_id
=
astra
.
algorithm
.
create
(
cfg
)
astra
.
algorithm
.
run
(
alg_id
)
res_astra
=
astra
.
data3d
.
get
(
rec_id
)
# housekeeping
astra
.
algorithm
.
delete
(
alg_id
)
astra
.
data3d
.
delete
(
rec_id
)
astra
.
data3d
.
delete
(
sino_id
)
assert
(
np
.
max
(
np
.
abs
(
res
-
res_astra
))
<
5e-4
),
"ConebeamReconstructor results are inconsistent with plain calls to astra"
def
test_full_vs_partial_cone_geometry
(
self
):
"""
In the ideal case, all the data volume (and reconstruction) fits in memory.
In practice this is rarely the case, so we have to reconstruct the volume slabs by slabs.
The slabs should be slightly overlapping to avoid "stitching" artefacts at the edges.
"""
# Astra seems to duplicate the projection data, even if all GPU memory is handled externally
# Let's try with (n_z * n_y * n_x + 2 * n_a * n_z * n_x) * 4 < mem_limit
# 256^3 seems OK with n_a = 200 (180 MB)
n_z
=
n_y
=
n_x
=
256
n_a
=
200
src_orig_dist
=
1000
volume
,
cone_data
=
generate_hollow_cube_cone_sinograms
(
vol_shape
=
(
n_z
,
n_y
,
n_x
),
n_angles
=
n_a
,
src_orig_dist
=
src_orig_dist
)
C_full
=
ConebeamReconstructor
(
cone_data
.
shape
,
src_orig_dist
,
cuda_options
=
{
"ctx"
:
self
.
ctx
})
proj_id
,
projs_full_geom
=
astra
.
create_sino3d_gpu
(
volume
,
C_full
.
proj_geom
,
C_full
.
vol_geom
)
astra
.
data3d
.
delete
(
proj_id
)
# Do the same slab-by-slab
inner_slab_size
=
64
overlap
=
16
slab_size
=
inner_slab_size
+
overlap
*
2
slabs
=
subdivide_into_overlapping_segment
(
n_z
,
slab_size
,
overlap
)
projs_partial_geom
=
np
.
zeros_like
(
projs_full_geom
)
for
slab
in
slabs
:
z_min
,
z_inner_min
,
z_inner_max
,
z_max
=
slab
rel_z_pos
=
(
z_min
+
z_max
)
/
2
-
n_z
/
2
subvolume
=
volume
[
z_min
:
z_max
,
:,
:]
C
=
ConebeamReconstructor
(
(
z_max
-
z_min
,
n_a
,
n_x
),
src_orig_dist
,
cuda_options
=
{
"ctx"
:
self
.
ctx
},
relative_z_position
=
rel_z_pos
)
proj_id
,
projs
=
astra
.
create_sino3d_gpu
(
subvolume
,
C
.
proj_geom
,
C
.
vol_geom
)
astra
.
data3d
.
delete
(
proj_id
)
projs_partial_geom
[
z_inner_min
:
z_inner_max
]
=
projs
[
z_inner_min
-
z_min
:
z_inner_max
-
z_min
]
error_profile
=
[
np
.
max
(
np
.
abs
(
proj_partial
-
proj_full
))
for
proj_partial
,
proj_full
in
zip
(
projs_partial_geom
,
projs_full_geom
)
]
assert
np
.
all
(
np
.
isclose
(
error_profile
,
0.0
,
atol
=
1
/
64
)),
"Mismatch between full-cone and slab geometries"
def
generate_hollow_cube_cone_sinograms
(
vol_shape
,
n_angles
,
src_orig_dist
,
prj_width
=
None
,
apply_filter
=
True
):
# Adapted from Astra toolbox python samples
n_z
,
n_y
,
n_x
=
vol_shape
vol_geom
=
astra
.
create_vol_geom
(
n_y
,
n_x
,
n_z
)
prj_width
=
prj_width
or
n_x
prj_height
=
n_z
angles
=
np
.
linspace
(
0
,
2
*
np
.
pi
,
n_angles
,
True
)
proj_geom
=
astra
.
create_proj_geom
(
"cone"
,
1.0
,
1.0
,
prj_height
,
prj_width
,
angles
,
src_orig_dist
,
0.0
)
# hollow cube
cube
=
np
.
zeros
(
astra
.
geom_size
(
vol_geom
),
dtype
=
"f"
)
d
=
int
(
min
(
n_x
,
n_y
)
/
2
*
(
1
-
np
.
sqrt
(
2
)
/
2
))
cube
[
20
:
-
20
,
d
:
-
d
,
d
:
-
d
]
=
1
cube
[
40
:
-
40
,
d
+
20
:
-
(
d
+
20
),
d
+
20
:
-
(
d
+
20
)]
=
0
# High-frequencies yield cannot be accurately retrieved
if
apply_filter
:
cube
=
gaussian_filter
(
cube
,
(
1.0
,
1.0
,
1.0
))
proj_id
,
proj_data
=
astra
.
create_sino3d_gpu
(
cube
,
proj_geom
,
vol_geom
)
astra
.
data3d
.
delete
(
proj_id
)
# (n_z, n_angles, n_x)
return
cube
,
proj_data
nabu/testutils.py
View file @
91565f40
...
...
@@ -26,6 +26,13 @@ if __do_long_tests__:
except
:
__do_long_tests__
=
False
__do_large_mem_tests__
=
os
.
environ
.
get
(
"NABU_LARGE_MEM_TESTS"
,
False
)
if
__do_large_mem_tests__
:
try
:
__do_large_mem_tests__
=
bool
(
int
(
__do_large_mem_tests__
))
except
:
__do_large_mem_tests__
=
False
def
generate_tests_scenarios
(
configurations
):
"""
...
...
nabu/utils.py
View file @
91565f40
...
...
@@ -397,6 +397,45 @@ def recursive_copy_dict(dict_):
return
res
def
subdivide_into_overlapping_segment
(
N
,
window_width
,
half_overlap
):
"""
Divide a segment into a number of possibly-overlapping sub-segments.
Parameters
----------
N: int
Total segment length
window_width: int
Length of each segment
half_overlap: int
Half-length of the overlap between each sub-segment.
Returns
-------
segments: list
A list where each item is in the form
(left_margin_start, inner_segment_start, inner_segment_end, right_margin_end)
"""
if
half_overlap
>=
window_width
//
2
:
raise
ValueError
(
"overlap must be smaller than window_width"
)
w_in
=
window_width
-
2
*
half_overlap
n_segments
=
N
//
w_in
inner_start
=
w_in
*
np
.
arange
(
n_segments
)
inner_end
=
w_in
*
(
np
.
arange
(
n_segments
)
+
1
)
margin_left_start
=
np
.
maximum
(
inner_start
-
half_overlap
,
0
)
margin_right_end
=
np
.
minimum
(
inner_end
+
half_overlap
,
N
)
segments
=
[
(
left_start
,
i_start
,
i_end
,
right_end
)
for
left_start
,
i_start
,
i_end
,
right_end
in
zip
(
margin_left_start
.
tolist
(),
inner_start
.
tolist
(),
inner_end
.
tolist
(),
margin_right_end
.
tolist
())
]
if
N
%
w_in
:
# additional sub-segment
new_margin_left_start
=
inner_end
[
-
1
]
-
half_overlap
new_inner_start
=
inner_end
[
-
1
]
new_inner_end
=
N
segments
.
append
((
new_margin_left_start
,
new_inner_start
,
new_inner_end
,
new_inner_end
))
return
segments
def
get_num_threads
(
n
=
None
):
"""
...
...
@@ -596,4 +635,4 @@ class DictToObj(object):
"""
def
__init__
(
self
,
dictio
):
self
.
__dict__
=
dictio
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment