Skip to content
GitLab
Projects Groups Snippets
  • /
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • integrator integrator
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 4
    • Issues 4
    • List
    • Boards
    • Service Desk
    • Milestones
  • Jira
    • Jira
  • Merge requests 2
    • Merge requests 2
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Packages and registries
    • Packages and registries
    • Package Registry
    • Container Registry
    • Infrastructure Registry
  • Monitor
    • Monitor
    • Incidents
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • tomotools
  • integratorintegrator
  • Issues
  • #3
Closed
Open
Issue created Aug 24, 2021 by Pierre Paleo@paleoOwner

Support multiple azimuthal range

Currently the distributed integration only supports an azimuthal integration range with one slice (nb_slices = 1 in make_azims )

Using multiple ranges entails to

  • Perform several AI (integrate1d, medfilt, sigmaclip...)
  • Save results in a dedicated HDF5 group out_file['azim_%02d/intensities' %(1+current_azim_index)]

Code for generating the azimuthal ranges:

def make_azims(azim_min, azim_max, nb_slices):
    cake = ( float(azim_min), float(azim_max) )
    npieces = int(nb_slices)
    #-- calculate azim slices
    if npieces == 1:
        azims = [( cake[0], cake[1] )]
    #-- calculate azim slices if n.pieces > 1
    elif npieces > 1:
        vals = np.linspace(cake[0], cake[1], npieces + 1)
        azims = [(vals[i], vals[i + 1]) for i in range(npieces)]
    return np.array(azims)

or equivalently

def make_azims(azim_min, azim_max, nb_slices):
    vals = np.linspace(azim_min, azim_max, int(nb_slices) + 1)
    return np.vstack([vals[:-1], vals[1:]]).T
Assignee
Assign to
Time tracking