Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
X
xsocs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
22
Issues
22
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Environments
Packages & Registries
Packages & Registries
Package Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
kmap
xsocs
Commits
3bcd3db0
Commit
3bcd3db0
authored
Jun 03, 2016
by
Damien Naudet
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Splitting the image to qspace conversion and the fit.
First commit of the fit module.
parent
a1eeccaf
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
195 additions
and
0 deletions
+195
-0
kmap/process/peak_fit.py
kmap/process/peak_fit.py
+195
-0
No files found.
kmap/process/peak_fit.py
0 → 100644
View file @
3bcd3db0
#!/usr/bin/python
# coding: utf8
# /*##########################################################################
#
# Copyright (c) 2015-2016 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/
__authors__
=
[
"D. Naudet"
]
__date__
=
"01/06/2016"
__license__
=
"MIT"
import
os
import
time
import
ctypes
import
multiprocessing
as
mp
import
multiprocessing.sharedctypes
as
mp_sharedctypes
import
h5py
import
numpy
as
np
from
scipy.optimize
import
leastsq
disp_times
=
False
class
FitTypes
(
object
):
ALLOWED
=
range
(
2
)
GAUSSIAN
,
CENTROID
=
ALLOWED
# 1d Gaussian func
_gauss_fn
=
lambda
p
,
x
:
(
p
[
0
]
*
(
1
/
np
.
sqrt
(
2
*
np
.
pi
*
(
p
[
2
]
**
2
)))
*
np
.
exp
(
-
(
x
-
p
[
1
])
**
2
/
(
2
*
p
[
2
]
**
2
)))
# 1d Gaussian fit
_gauss_fit_err
=
lambda
p
,
x
,
y
:
(
_gauss_fn
(
p
,
x
)
-
y
)
def
_qspace_gauss_fit
(
x
,
y
,
v0
):
# TODO : throw exception if fit failed
result
=
leastsq
(
_gauss_fit_err
,
v0
,
args
=
(
x
,
y
,),
maxfev
=
100000
,
full_output
=
True
)
if
result
[
4
]
not
in
[
1
,
2
,
3
,
4
]:
raise
ValueError
(
'Failed to fit : {0}.'
.
format
(
result
[
3
]))
return
result
[
0
]
def
get_peaks
(
qspace_f
,
fit_type
=
FitTypes
.
GAUSSIAN
,
indices
=
None
):
#:returns: a list of tuples (x_pos, y_pos, qx_peak, qy_peak, qz_peak,
#||q||, i_peak)
#:rtype: *list*
t_read
=
0.
t_fit
=
0.
t_total
=
time
.
time
()
if
fit_type
not
in
FitTypes
.
ALLOWED
:
raise
ValueError
(
'Unknown fit type : {0}'
)
if
fit_type
==
FitTypes
.
GAUSSIAN
:
fit_fn
=
_qspace_gauss_fit
with
h5py
.
File
(
qspace_f
,
'r'
)
as
qspace_h5
:
q_x
=
qspace_h5
[
'bins_edges/x'
][:]
q_y
=
qspace_h5
[
'bins_edges/y'
][:]
q_z
=
qspace_h5
[
'bins_edges/z'
][:]
qdata
=
qspace_h5
[
'qspace'
]
n_points
=
qdata
.
shape
[
0
]
if
indices
is
None
:
indices
=
range
(
n_points
)
n_indices
=
len
(
indices
)
cube
=
np
.
ascontiguousarray
(
np
.
zeros
(
qdata
.
shape
[
1
:]),
dtype
=
qdata
.
dtype
)
x_0
=
[
1.0
,
q_x
.
mean
(),
1.0
]
y_0
=
[
1.0
,
q_y
.
mean
(),
1.0
]
z_0
=
[
1.0
,
q_z
.
mean
(),
1.0
]
res_x
=
np
.
full
((
n_indices
,
3
),
np
.
nan
,
dtype
=
np
.
float64
)
res_y
=
np
.
full
((
n_indices
,
3
),
np
.
nan
,
dtype
=
np
.
float64
)
res_z
=
np
.
full
((
n_indices
,
3
),
np
.
nan
,
dtype
=
np
.
float64
)
success
=
np
.
full
((
n_indices
,),
True
,
dtype
=
bool
)
for
i_cube
in
indices
:
if
i_cube
%
100
==
0
:
print
(
'Processed cube {0}/{1}.'
.
format
(
i_cube
,
n_points
))
t0
=
time
.
time
()
qdata
.
read_direct
(
cube
,
source_sel
=
np
.
s_
[
i_cube
],
dest_sel
=
None
)
t_read
+=
time
.
time
()
-
t0
t0
=
time
.
time
()
z_sum
=
cube
.
sum
(
axis
=
0
).
sum
(
axis
=
0
)
try
:
fit_z
=
fit_fn
(
q_z
,
z_sum
,
z_0
)
except
:
success
[
i_cube
]
=
False
else
:
res_z
[
i_cube
]
=
fit_z
y_sum
=
cube
.
sum
(
axis
=
2
).
sum
(
axis
=
0
)
try
:
fit_y
=
fit_fn
(
q_y
,
y_sum
,
y_0
)
except
:
success
[
i_cube
]
=
False
else
:
res_y
[
i_cube
]
=
fit_y
x_sum
=
cube
.
sum
(
axis
=
2
).
sum
(
axis
=
1
)
try
:
fit_x
=
fit_fn
(
q_x
,
x_sum
,
x_0
)
except
:
success
[
i_cube
]
=
False
else
:
res_x
[
i_cube
]
=
fit_x
t_fit
+=
time
.
time
()
-
t0
t_total
=
time
.
time
()
-
t_total
if
disp_times
:
print
(
'Times : total={t_total}, read={t_read}, fit={t_fit}.'
''
.
format
(
t_total
=
t_total
,
t_read
=
t_read
,
t_fit
=
t_fit
))
return
res_x
,
res_y
,
res_z
,
success
#t0 = time.time()
#v0 = [1.0, qz.mean(), 1.0]
#qz_peak = leastsq(e_gauss_fit,
#v0[:],
#args=(qz_idx, (cumul.sum(axis=0)).sum(axis=0)),
#maxfev=100000,
#full_output=1)[0][1]
#v0 = [1.0, qy.mean(), 1.0]
#qy_peak = leastsq(e_gauss_fit,
#v0[:],
#args=(qy_idx, (cumul.sum(axis=2)).sum(axis=0)),
#maxfev=100000,
#full_output=1)[0][1]
#v0 = [1.0, qx.mean(), 1.0]
#qx_peak = leastsq(e_gauss_fit,
#v0[:],
#args=(qx_idx, (cumul.sum(axis=2)).sum(axis=1)),
#maxfev=100000,
#full_output=1)[0][1]
#i_peak = leastsq(e_gauss_fit,
#v0[:],
#args=(qx_idx, (cumul.sum(axis=2)).sum(axis=1)),
#maxfev=100000,
#full_output=1)[0][0]
#t_fit += time.time() - t0
#q = np.sqrt(qx_peak**2 + qy_peak**2 + qz_peak**2)
#t0 = time.time()
#results = np.frombuffer(g_shared_res)
#results.shape = n_xy_pos, 5
#results[image_idx] = (qx_peak,
#qy_peak,
#qz_peak,
#q,
#i_peak)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment