XsocsH5.py 15.8 KB
Newer Older
Damien Naudet's avatar
Damien Naudet committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2015-2016 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/

from __future__ import absolute_import

__authors__ = ["D. Naudet"]
__license__ = "MIT"
__date__ = "15/09/2016"

32
import weakref
Damien Naudet's avatar
WIP    
Damien Naudet committed
33
from collections import OrderedDict, namedtuple
34
35
36
37
38
from contextlib import contextmanager

import h5py as _h5py
import numpy as _np

Damien Naudet's avatar
Damien Naudet committed
39
from .XsocsH5Base import XsocsH5Base
40
41


Damien Naudet's avatar
Damien Naudet committed
42
43
class InvalidEntryError(Exception):
    pass
44
45


Damien Naudet's avatar
WIP    
Damien Naudet committed
46
47
48
ScanPositions = namedtuple('ScanPositions',
                           ['motor_0', 'pos_0', 'motor_1', 'pos_1', 'shape'])

49
50
51
MOTORCOLS = {"pix":"adcY",
             "piy":"adcX",
             "piz":"adcZ"}
Damien Naudet's avatar
WIP    
Damien Naudet committed
52

53
54
55
56
57
58
59
60
61
62
63
64

def _process_entry(method):
    def _method(inst, entry=None, *args, **kwargs):
        if entry is None:
            entry = inst.get_entry_name()
        elif isinstance(entry, int):
            entry = inst.get_entry_name(entry)
        return method(inst, entry, *args, **kwargs)
    return _method



65
66
67
68
69
70
71
class XsocsH5(XsocsH5Base):

    TOP_ENTRY = 'global'
    positioners_tpl = '/{0}/instrument/positioners'
    img_data_tpl = '/{0}/measurement/image/data'
    measurement_tpl = '/{0}/measurement'
    detector_tpl = '/{0}/instrument/detector'
Damien Naudet's avatar
Damien Naudet committed
72
    scan_params_tpl = '/{0}/scan'
73
74
75
76
77
78

    def __init__(self, h5_f, mode='r'):
        super(XsocsH5, self).__init__(h5_f, mode=mode)

        self.__entries = None

79
    @_process_entry
80
81
82
    def title(self, entry):
        with self._get_file() as h5_file:
            path = entry + '/title'
83
            return h5_file[path][()]
84

85
    @_process_entry
86
87
88
89
90
91
    def entry_filename(self, entry):
        with self._get_file() as h5_file:
            return h5_file[entry].file.filename

    def _update_entries(self):
        with self._get_file() as h5_file:
92
93
94
95
            # TODO : this isnt pretty but for some reason the attrs.get() fails
            # when there is no attribute NX_class (should return the default
            # None)
            self.__entries = sorted([key for key in h5_file
Damien Naudet's avatar
Damien Naudet committed
96
97
98
                if ('NX_class' in h5_file[key].attrs and
                    h5_file[key].attrs[
                        'NX_class'].decode() == 'NXentry')])
99
100
101
102
103
104

    def entries(self):
        if self.__entries is None:
            self._update_entries()
        return self.__entries[:]

105
    @_process_entry
106
107
108
109
    def scan_angle(self, entry):
        # TODO : get the correct angle name
        return self.positioner(entry, 'eta')

110
    def get_entry_name(self, entry_idx=0):
111
112
113
114
115
116
117
118
119
120
121
        """
        Get the entry found at position *entry_idx* (entries names sorted
        alphabeticaly).
        Raises InvalidEntryError if the entry is not found.
        """
        try:
            return self.entries()[entry_idx]
        except IndexError:
            raise InvalidEntryError('Entry not found (entry_idx={0}).'
                                    ''.format(entry_idx))

122
    @_process_entry
123
124
125
126
127
128
129
130
    def __detector_params(self, entry, param_names):
        with self._get_file() as h5_file:
            path = self.detector_tpl.format(entry) + '/{0}'
            if isinstance(param_names, (list, set, tuple)):
                return [h5_file.get(path.format(param), _np.array(None))[()]
                        for param in param_names]
            return h5_file.get(path.format(param_names), _np.array(None))[()]

131
    @_process_entry
132
133
134
    def beam_energy(self, entry):
        return self.__detector_params(entry, 'beam_energy')

135
    @_process_entry
136
137
138
139
    def direct_beam(self, entry):
        return self.__detector_params(entry, ['center_chan_dim0',
                                              'center_chan_dim1'])

140
    @_process_entry
141
142
143
144
    def chan_per_deg(self, entry):
        return self.__detector_params(entry, ['chan_per_deg_dim0',
                                              'chan_per_deg_dim1'])

145
146
147
148
149
150
151
152
153
154
155
    @_process_entry
    def image_roi_offset(self, entry):
        """Image ROI offset that was saved in the hdf5 file

        :param str entry: Entry from which to retrieve the information
        :return: ROI offset (row_offset, column)
        :rtype: Union[List[int],None]
        """
        return self.__detector_params(entry, 'image_roi_offset')


156
    @_process_entry
157
158
159
160
161
    def n_images(self, entry):
        # TODO : make sure that data.ndims = 3
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, shape=True)[0]

162
    @_process_entry
163
164
165
166
167
    def image_size(self, entry):
        # TODO : make sure that data.ndims = 3
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, shape=True)[1:3]

168
    @_process_entry
169
170
171
172
    def image_dtype(self, entry):
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, dtype=True)

173
    @_process_entry
174
175
176
    def dset_shape(self, path):
        return self._get_array_data(path, shape=True)

177
    @_process_entry
Damien Naudet's avatar
Damien Naudet committed
178
    def image_cumul(self, entry, dtype=None):
179
180
        """
        Returns the summed intensity for each image.
Damien Naudet's avatar
Damien Naudet committed
181
182
183
        :param dtype: dtype passed to the numpy.sum function.
            Default is numpy.double.
        :type dtype: numpy.dtype
184
        """
Damien Naudet's avatar
Damien Naudet committed
185
186
187
188
189
        if dtype is None:
            dtype = _np.double

        with self.image_dset_ctx(entry) as ctx:
            shape = ctx.shape
Damien Naudet's avatar
WIP    
Damien Naudet committed
190
            intensity = _np.zeros(shape=(shape[0],), dtype=dtype)
Damien Naudet's avatar
Damien Naudet committed
191
            img_buffer = _np.array(ctx[0], dtype=dtype)
192
            for idx in range(0, shape[0]):
Damien Naudet's avatar
Damien Naudet committed
193
194
195
                ctx.read_direct(img_buffer, idx)
                intensity[idx] = _np.sum(img_buffer)
        return intensity
196

197
    @_process_entry
198
199
    def scan_positions(self, entry):
        path = self.measurement_tpl.format(entry)
200
        params = self.scan_params(entry)
201
202
        m0 = '/{0}'.format(MOTORCOLS[params['motor_0'].decode()])
        m1 = '/{0}'.format(MOTORCOLS[params['motor_1'].decode()])
Damien Naudet's avatar
WIP    
Damien Naudet committed
203
204
        n_0 = params['motor_0_steps']
        n_1 = params['motor_1_steps']
205
206
207

        x_pos = self._get_array_data(path + m0)
        y_pos = self._get_array_data(path + m1)
Damien Naudet's avatar
WIP    
Damien Naudet committed
208
209
210
211
212
        return ScanPositions(motor_0=params['motor_0'],
                             pos_0=x_pos,
                             motor_1=params['motor_1'],
                             pos_1=y_pos,
                             shape=(n_0, n_1))
213

214
    @_process_entry
215
216
217
218
219
220
221
222
223
224
225
226
    def acquisition_params(self, entry):
        beam_energy = self.beam_energy(entry)
        direct_beam = self.direct_beam(entry)
        chan_per_deg = self.chan_per_deg(entry)

        result = OrderedDict()
        result['beam_energy'] = beam_energy
        result['direct_beam'] = direct_beam
        result['chan_per_deg'] = chan_per_deg

        return result

227
    @_process_entry
Damien Naudet's avatar
Damien Naudet committed
228
229
230
231
232
233
234
235
236
    def is_regular_grid(self, entry):
        # TODO
        """
        For now grids are always regular
        :param entry:
        :return:
        """
        return True

237
    @_process_entry
238
    def scan_params(self, entry):
Damien Naudet's avatar
Damien Naudet committed
239
240
        # TODO : make this more generic to make it compatible
        #  with irregular grids
Damien Naudet's avatar
Damien Naudet committed
241
242
243
244
245
246
247
        param_names = ['motor_0', 'motor_0_start',
                       'motor_0_end', 'motor_0_steps',
                       'motor_1', 'motor_1_start',
                       'motor_1_end', 'motor_1_steps',
                       'delay']
        with self._get_file() as h5_file:
            path = self.scan_params_tpl.format(entry) + '/{0}'
Damien Naudet's avatar
Damien Naudet committed
248
249
250
            return OrderedDict([(param, h5_file.get(path.format(param),
                                                    _np.array(None))[()])
                                for param in param_names])
251

252
    @_process_entry
253
254
255
256
    def positioner(self, entry, positioner):
        path = self.positioners_tpl.format(entry) + '/' + positioner
        return self._get_scalar_data(path)

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    @_process_entry
    def positioners(self, entry):
        """Returns names of positioners.

        :return: List of dataset names in positioners
        :rtype: List[str]
        """
        positioners = []

        path = self.positioners_tpl.format(entry) + '/'
        with self._get_file() as h5_file:
            for name, node in h5_file[path].items():
                if (isinstance(node, _h5py.Dataset) and
                        node.dtype.kind in 'iuf'):
                    positioners.append(name)

        return positioners

275
    @_process_entry
276
277
278
279
    def measurement(self, entry, measurement):
        path = self.measurement_tpl.format(entry) + '/' + measurement
        return self._get_array_data(path)

280
281
    @_process_entry
    def normalizers(self, entry):
282
        """Returns names of dataset in measurement that can be used to normalize data
283

284
285
        It returns names of 1D datasets with same number of elements as images
        that are available in the measurement group.
286

287
288
        :return: List of dataset names in measurement that might be normalizers
        :rtype: List[str]
289
        """
290
        normalizers = []
291
292
293
294
295
296

        nb_images = self.n_images(entry)

        path = self.measurement_tpl.format(entry) + '/'
        with self._get_file() as h5_file:
            for name, node in h5_file[path].items():
297
298
                if (isinstance(node, _h5py.Dataset) and
                        node.dtype.kind in 'iuf' and
299
                        len(node.shape) == 1 and
300
                        node.shape[0] == nb_images):
301
                    # Only get (u)int and float datasets
302
303
                    # with same number of values as number of images
                    normalizers.append(name)
304
305
306

        return normalizers

307
    @contextmanager
308
    @_process_entry
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    def image_dset_ctx(self,
                       entry,
                       create=False,
                       **kwargs):
        """
        Context manager for the image dataset.
        WARNING: only to be used as a context manager!
        """
        dset_path = self.img_data_tpl.format(entry)
        with self._get_file() as h5_file:
            if create:
                try:
                    image_dset = h5_file.require_dataset(dset_path,
                                                         **kwargs)
                except TypeError:
                    image_dset = h5_file.create_dataset(dset_path,
                                                        **kwargs)
            else:
                image_dset = h5_file[dset_path]
            yield weakref.proxy(image_dset)
            del image_dset


Damien Naudet's avatar
Damien Naudet committed
332
class XsocsH5Writer(XsocsH5):
333
334

    def __init__(self, h5_f, mode='a', **kwargs):
Damien Naudet's avatar
Damien Naudet committed
335
        super(XsocsH5Writer, self).__init__(h5_f, mode=mode, **kwargs)
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

    def __set_detector_params(self, entry, params):
        with self._get_file() as h5_file:
            path = self.detector_tpl.format(entry) + '/{0}'
            for param_name, param_value in params.items():
                self._set_scalar_data(path.format(param_name), param_value)

    def set_beam_energy(self, beam_energy, entry):
        return self.__set_detector_params(entry, {'beam_energy': beam_energy})

    def set_direct_beam(self, direct_beam, entry):
        value = {'center_chan_dim0': direct_beam[0],
                 'center_chan_dim1': direct_beam[1]}
        return self.__set_detector_params(entry, value)

    def set_chan_per_deg(self, chan_per_deg, entry):
        value = {'chan_per_deg_dim0': chan_per_deg[0],
                 'chan_per_deg_dim1': chan_per_deg[1]}
        return self.__set_detector_params(entry, value)

356
357
358
359
360
361
362
363
364
    def set_image_roi_offset(self, offset, entry):
        """Store image ROI offset information in the hdf5 file

        :param List[int] offset:
            Offset of the ROI in pixels (row_offset, column_offset)
        :param str entry: Entry for which to store information
        """
        return self.__set_detector_params(entry, {'image_roi_offset': offset})

365
366
367
368
369
370
371
372
373
374
375
376
    def set_scan_params(self,
                        entry,
                        motor_0,
                        motor_0_start,
                        motor_0_end,
                        motor_0_steps,
                        motor_1,
                        motor_1_start,
                        motor_1_end,
                        motor_1_steps,
                        delay,
                        **kwargs):
Damien Naudet's avatar
Damien Naudet committed
377
378
379
380
381
382
383
384
385
386
387
388
389
390

        params = OrderedDict([('motor_0', _np.string_(motor_0)),
                              ('motor_0_start', float(motor_0_start)),
                              ('motor_0_end', float(motor_0_end)),
                              ('motor_0_steps', int(motor_0_steps)),
                              ('motor_1', _np.string_(motor_1)),
                              ('motor_1_start', float(motor_1_start)),
                              ('motor_1_end', float(motor_1_end)),
                              ('motor_1_steps', int(motor_1_steps)),
                              ('delay', float(delay))])
        with self._get_file():
            path = self.scan_params_tpl.format(entry) + '/{0}'
            for param_name, param_value in params.items():
                self._set_scalar_data(path.format(param_name), param_value)
391
392
393
394
395
396
397
398
399
400
401

    def create_entry(self, entry):
        with self._get_file() as h5_file:
            entry_grp = h5_file.require_group(entry)
            entry_grp.attrs['NX_class'] = _np.string_('NXentry')

            # creating mandatory groups and setting their Nexus attributes
            grp = entry_grp.require_group('measurement/image')
            grp.attrs['interpretation'] = _np.string_('image')

            # setting the nexus classes
402
            #entry_grp.attrs['NX_class'] = _np.string_('NXentry')
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418

            grp = entry_grp.require_group('instrument')
            grp.attrs['NX_class'] = _np.string_('NXinstrument')

            grp = entry_grp.require_group('instrument/detector')
            grp.attrs['NX_class'] = _np.string_('NXdetector')

            grp = entry_grp.require_group('instrument/positioners')
            grp.attrs['NX_class'] = _np.string_('NXcollection')

            grp = entry_grp.require_group('measurement')
            grp.attrs['NX_class'] = _np.string_('NXcollection')

            grp = entry_grp.require_group('measurement/image')
            grp.attrs['NX_class'] = _np.string_('NXcollection')

Damien Naudet's avatar
Damien Naudet committed
419
            # creating some links
420
421
422
423
424
            grp = entry_grp.require_group('measurement/image')
            det_grp = entry_grp.require_group('instrument/detector')
            grp['info'] = det_grp
            det_grp['data'] = _h5py.SoftLink(self.img_data_tpl.format(entry))

Damien Naudet's avatar
Damien Naudet committed
425
            self._update_entries()
426
427


Damien Naudet's avatar
Damien Naudet committed
428
class XsocsH5MasterWriter(XsocsH5Writer):
429

430
431
432
433
434
435
436
437
438
439
    def add_entry_file(self, entry, entry_file, master_entry=None):
        """Add an external link to an entry in a sub-file

        :param str entry: Name of the entry in the sub-file
        :param str entry_file: Name of the file the entry belongs to
        :param str master_entry: Optional alternative entry name in master file
        """
        if master_entry is None:
            master_entry = entry

440
        with self._get_file() as h5_file:
441
            h5_file[master_entry] = _h5py.ExternalLink(entry_file, entry)
Damien Naudet's avatar
Damien Naudet committed
442
443
444
445


if __name__ == '__main__':
    pass