peak_fit.py 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#!/usr/bin/python
# coding: utf8
# /*##########################################################################
#
# Copyright (c) 2015-2016 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/

Damien Naudet's avatar
WIP  
Damien Naudet committed
27 28
from __future__ import absolute_import

29 30 31 32
__authors__ = ["D. Naudet"]
__date__ = "01/06/2016"
__license__ = "MIT"

33
import logging
Thomas Vincent's avatar
Thomas Vincent committed
34
import functools
35
import ctypes
Thomas Vincent's avatar
Thomas Vincent committed
36
import multiprocessing
Damien Naudet's avatar
Damien Naudet committed
37
from threading import Thread
38
import multiprocessing.sharedctypes as mp_sharedctypes
39
from silx.math.fit import snip1d
40 41

import numpy as np
42
from scipy.optimize import leastsq
43

Thomas Vincent's avatar
Thomas Vincent committed
44
from ... import config
Damien Naudet's avatar
Damien Naudet committed
45
from ...io import QSpaceH5
46
from ...io.FitH5 import BackgroundTypes
47 48
from ...util import gaussian
from .fitresults import FitResult
49

50 51 52 53

_logger = logging.getLogger(__name__)


54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
def background_estimation(mode, data):
    """Estimates a background of mode kind for data

    :param BackgroundTypes mode: The kind of background to compute
    :param numpy.ndarray data: The data array to process
    :return: The estimated background as an array with same shape as input
    :rtype: numpy.ndarray
    :raises ValueError: In case mode is not known
    """
    # Background subtraction
    if mode == BackgroundTypes.CONSTANT:
        # Shift data so that smallest value is 0
        return np.ones_like(data) * np.nanmin(data)

    elif mode == BackgroundTypes.LINEAR:
        # Simple linear background
        return np.linspace(data[0], data[-1], num=len(data), endpoint=True)

72 73 74 75
    elif mode == BackgroundTypes.SNIP:
        # Using snip background
        return snip1d(data, snip_width=len(data))

76 77 78 79 80 81 82
    elif mode == BackgroundTypes.NONE:
        return np.zeros_like(data)

    else:
        raise ValueError("Unsupported background mode")


83 84 85 86 87 88
class FitTypes(object):
    """Kind of fit available"""
    ALLOWED = range(2)
    GAUSSIAN, CENTROID = ALLOWED


Damien Naudet's avatar
Damien Naudet committed
89
class PeakFitter(Thread):
Damien Naudet's avatar
Damien Naudet committed
90
    """
Thomas Vincent's avatar
Thomas Vincent committed
91
    :param str qspace_f: path to the HDF5 file containing the qspace cubes
Damien Naudet's avatar
Damien Naudet committed
92

Thomas Vincent's avatar
Thomas Vincent committed
93
    :param FitTypes fit_type:
Damien Naudet's avatar
Damien Naudet committed
94 95

    :param indices: indices of the cubes (in the input HDF5 dataset) for which
96
        the dim0/dim1/dim2 peaks coordinates will be computed. E.g : if the array
Damien Naudet's avatar
Damien Naudet committed
97
        [1, 2, 3] is provided, only those cubes will be fitted.
Thomas Vincent's avatar
Thomas Vincent committed
98
    :type indices: *optional* `array_like`
Damien Naudet's avatar
Damien Naudet committed
99

Thomas Vincent's avatar
Thomas Vincent committed
100 101
    :param Union[int,None] n_proc:
        Number of process to use. If None, the config value is used.
102 103

    :param BackgroundTypes background: The background subtraction to perform
Damien Naudet's avatar
Damien Naudet committed
104
    """
Damien Naudet's avatar
Damien Naudet committed
105

Damien Naudet's avatar
Damien Naudet committed
106 107 108 109
    READY, RUNNING, DONE, ERROR, CANCELED = __STATUSES = range(5)

    def __init__(self,
                 qspace_f,
Damien Naudet's avatar
Damien Naudet committed
110
                 fit_type=FitTypes.GAUSSIAN,
Damien Naudet's avatar
Damien Naudet committed
111 112
                 indices=None,
                 n_proc=None,
113
                 roi_indices=None,
Thomas Vincent's avatar
Thomas Vincent committed
114
                 background=BackgroundTypes.NONE):
Damien Naudet's avatar
Damien Naudet committed
115 116 117 118
        super(PeakFitter, self).__init__()

        self.__results = None
        self.__thread = None
Damien Naudet's avatar
Damien Naudet committed
119
        self.__callback = None
Damien Naudet's avatar
Damien Naudet committed
120 121 122 123 124 125 126

        self.__status = self.READY

        self.__indices = None

        self.__qspace_f = qspace_f
        self.__fit_type = fit_type
127
        self.__background = background
Damien Naudet's avatar
Damien Naudet committed
128

129
        self.__n_proc = n_proc if n_proc else config.DEFAULT_PROCESS_NUMBER
Damien Naudet's avatar
Damien Naudet committed
130
        self.__shared_progress = mp_sharedctypes.RawArray(ctypes.c_int32,
131
                                                          self.__n_proc)
Damien Naudet's avatar
Damien Naudet committed
132 133

        if roi_indices is not None:
Damien Naudet's avatar
Damien Naudet committed
134
            self.__roi_indices = np.array(roi_indices[:])
Damien Naudet's avatar
Damien Naudet committed
135 136 137 138 139
        else:
            self.__roi_indices = None

        if fit_type not in FitTypes.ALLOWED:
            self.__set_status(self.ERROR)
140 141 142 143 144
            raise ValueError('Unknown fit type: {0}'.format(fit_type))

        if background not in BackgroundTypes.ALLOWED:
            self.__set_status(self.ERROR)
            raise ValueError('Unknown background type: {}'.format(background))
145

Damien Naudet's avatar
Damien Naudet committed
146 147 148 149
        try:
            with QSpaceH5.QSpaceH5(qspace_f) as qspace_h5:
                with qspace_h5.qspace_dset_ctx() as dset:
                    qdata_shape = dset.shape
Damien Naudet's avatar
Damien Naudet committed
150

Damien Naudet's avatar
Damien Naudet committed
151
                n_points = qdata_shape[0]
152

Damien Naudet's avatar
Damien Naudet committed
153
                if indices is None:
Damien Naudet's avatar
Damien Naudet committed
154
                    indices = list(range(n_points))
Damien Naudet's avatar
Damien Naudet committed
155 156 157 158 159
                else:
                    indices = indices[:]
        except IOError:
            self.__set_status(self.ERROR)
            raise
Damien Naudet's avatar
Damien Naudet committed
160

Damien Naudet's avatar
Damien Naudet committed
161
        self.__indices = np.array(indices)
Damien Naudet's avatar
Damien Naudet committed
162 163 164 165 166 167 168

    def __set_status(self, status):
        assert status in self.__STATUSES
        self.__status = status

    status = property(lambda self: self.__status)

Damien Naudet's avatar
Damien Naudet committed
169 170
    results = property(lambda self: self.__results)

171
    def peak_fit(self, blocking=True, callback=None):
Damien Naudet's avatar
Damien Naudet committed
172 173 174 175 176 177 178 179
        if self.__thread and self.__thread.is_alive():
            raise RuntimeError('A fit is already in progress.')

        self.__results = None

        if blocking:
            return self.__peak_fit()
        else:
Thomas Vincent's avatar
Thomas Vincent committed
180
            self.__thread = Thread(target=self.__peak_fit)
Damien Naudet's avatar
Damien Naudet committed
181
            self.__callback = callback
Thomas Vincent's avatar
Thomas Vincent committed
182
            self.__thread.start()
Damien Naudet's avatar
Damien Naudet committed
183 184 185 186 187 188 189 190 191

    def progress(self):
        return (100.0 *
                np.frombuffer(self.__shared_progress, dtype='int32').max() /
                (len(self.__indices) - 1))

    def __peak_fit(self):
        self.__set_status(self.RUNNING)

192
        # TODO
193
        progress = np.frombuffer(self.__shared_progress, dtype='int32')
Damien Naudet's avatar
Damien Naudet committed
194
        progress[:] = 0
195

Thomas Vincent's avatar
Thomas Vincent committed
196
        pool = multiprocessing.Pool(self.__n_proc)
197 198 199 200 201 202 203
        fit_results = pool.map(
            functools.partial(_fit_process,
                              qspace_f=self.__qspace_f,
                              fit_type=self.__fit_type,
                              background_type=self.__background,
                              roiIndices=self.__roi_indices),
            self.__indices)
Damien Naudet's avatar
Damien Naudet committed
204 205 206
        pool.close()
        pool.join()

207
        # Prepare FitResult object
Thomas Vincent's avatar
Thomas Vincent committed
208
        with QSpaceH5.QSpaceH5(self.__qspace_f) as qspace_h5:
209 210
            x_pos = qspace_h5.sample_x[self.__indices]
            y_pos = qspace_h5.sample_y[self.__indices]
211
            q_dim0, q_dim1, q_dim2 = qspace_h5.qspace_dimension_values
Damien Naudet's avatar
Damien Naudet committed
212

213 214 215 216
        if self.__roi_indices is not None:
            q_dim0 = q_dim0[self.__roi_indices[0][0]:self.__roi_indices[0][1]]
            q_dim1 = q_dim1[self.__roi_indices[1][0]:self.__roi_indices[1][1]]
            q_dim2 = q_dim2[self.__roi_indices[2][0]:self.__roi_indices[2][1]]
Damien Naudet's avatar
Damien Naudet committed
217

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
        if self.__fit_type == FitTypes.GAUSSIAN:
            fit_name = 'Gaussian'
            result_name = 'gauss_0'
            result_dtype = [('Area', np.float64),
                            ('Center', np.float64),
                            ('Sigma', np.float64),
                            ('Status', np.bool_)]

        elif self.__fit_type == FitTypes.CENTROID:
            fit_name = 'Centroid'
            result_name = 'centroid'
            result_dtype = [('COM', np.float64),
                            ('I_sum', np.float64),
                            ('I_max', np.float64),
                            ('Pos_max', np.float64),
                            ('Status', np.bool_)]

        else:
            raise RuntimeError('Unknown Fit Type')
Damien Naudet's avatar
Damien Naudet committed
237

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
        results = FitResult(entry=fit_name,
                            sample_x=x_pos,
                            sample_y=y_pos,
                            q_x=q_dim0,
                            q_y=q_dim1,
                            q_z=q_dim2,
                            background_mode=self.__background)
        fit_results = np.array(fit_results, dtype=result_dtype)
        # From points x axes to axes x points
        fit_results = np.transpose(fit_results)
        for axis_index, array in enumerate(fit_results):
            for name, _ in result_dtype[:-1]:
                results._add_axis_result(result_name, axis_index, name, array[name])
            results._set_axis_status(axis_index, array['Status'])

        self.__results = results
Damien Naudet's avatar
Damien Naudet committed
254 255 256

        self.__set_status(self.DONE)

Damien Naudet's avatar
Damien Naudet committed
257 258 259
        if self.__callback:
            self.__callback()

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        return results


def _fit_process(index,
                 qspace_f,
                 fit_type=FitTypes.GAUSSIAN,
                 background_type=BackgroundTypes.NONE,
                 roiIndices=None):
    """Run fit processing.

    It loads a QSpace, extracts a ROI from it, project to axes,
    and then for each axis, it subtracts a background and performs a fit/COM.

    This function is run through a multiprocessing.Pool

    :param int index: The index of the QSpace to process
    :param str qspace_f: Filename of the hdf5 file containing QSpace
    :param FitTypes fit_type: The kind of fit to perform
    :param BackgroundTypes background_type:
        The kind of background subtraction to perform
    :param Union[List[List[int]],None] roiIndices:
        Optional QSpace ROI start:end in the 3 dimensions
    :return: Fit results as a list of results for dim0, dim1 and dim2
    :rtype: List[List[Union[float,bool]]]
    """
    # Read data from file
    with QSpaceH5.QSpaceH5(qspace_f) as qspace_h5:
        axes = qspace_h5.qspace_dimension_values
        hits = qspace_h5.histo
        qspace = qspace_h5.qspace_slice(index)

    # apply Qspace ROI
    if roiIndices is not None:
        dim0Slice = slice(roiIndices[0][0], roiIndices[0][1], 1)
        dim1Slice = slice(roiIndices[1][0], roiIndices[1][1], 1)
        dim2Slice = slice(roiIndices[2][0], roiIndices[2][1], 1)

        axes = [axis[roi] for axis, roi in
                zip(axes, (dim0Slice, dim1Slice, dim2Slice))]
        hits = hits[dim0Slice, dim1Slice, dim2Slice]
        qspace = qspace[dim0Slice, dim1Slice, dim2Slice]

    # Normalize with hits and project to axes
    projections = project(qspace, hits)
304

305 306 307 308
    # Background subtraction
    if background_type != BackgroundTypes.NONE:
        for array in projections:
            array -= background_estimation(background_type, array)
Damien Naudet's avatar
Damien Naudet committed
309

310 311 312 313
    # Fit/COM
    fit = {FitTypes.CENTROID: centroid,
           FitTypes.GAUSSIAN: gaussian_fit}[fit_type]
    result = [fit(axis, values) for axis, values in zip(axes, projections)]
Damien Naudet's avatar
Damien Naudet committed
314

315
    return result
Damien Naudet's avatar
Damien Naudet committed
316

317

318 319
def project(data, hits=None):
    """Sum data along each axis
Damien Naudet's avatar
Damien Naudet committed
320

321 322 323 324 325 326 327 328 329
    :param numpy.ndarray data: 3D histogram
    :param Union[numpy.ndarray,None] hits:
        Number of bin count of the histogram or None to ignore
    :return: Projections on each axis of the dataset
    :rtype: List[numpy.ndarray]
    """
    if hits is not None:
        data /= hits
        data[hits <= 0] = 0
330

331 332 333 334 335
    dim2_sum = data.sum(axis=0).sum(axis=0)
    data_sum_dim2 = data.sum(axis=2)
    dim1_sum = data_sum_dim2.sum(axis=0)
    dim0_sum = data_sum_dim2.sum(axis=1)
    return dim0_sum, dim1_sum, dim2_sum
336

337

338
# Center of mass
Damien Naudet's avatar
Damien Naudet committed
339

340 341
def centroid(axis, signal):
    """Returns Center of mass and maximum information
342

343 344 345 346 347 348 349 350 351
    :param numpy.ndarray axis: 1D x data
    :param numpy.ndarray signal: 1D y data
    :return: Center of mass, sum of signal, max of signal, position of max and status
        ('COM', 'I_sum', 'I_max', 'Pos_max', 'status')
    :rtype: List[Union[float,bool]]
    """
    signal_sum = signal.sum()
    if signal_sum == 0:
        return float('nan'), float('nan'), float('nan'), float('nan'), False
Damien Naudet's avatar
Damien Naudet committed
352

353 354 355 356 357 358 359
    else:
        max_idx = signal.argmax()
        return (float(np.dot(axis, signal) / signal_sum),
                float(signal_sum),
                float(signal[max_idx]),
                float(axis[max_idx]),
                True)
Damien Naudet's avatar
Damien Naudet committed
360

361

362
# Gaussian fit
363

364 365
def _gaussian_err(parameters, axis, signal):
    """Returns difference between signal and given gaussian
Damien Naudet's avatar
Damien Naudet committed
366

367 368 369 370 371 372 373
    :param List[float] parameters: area, center, sigma
    :param numpy.ndarray axis: 1D x data
    :param numpy.ndarray signal: 1D y data
    :return:
    """
    area, center, sigma = parameters
    return gaussian(axis, area, center, sigma) - signal
374

Damien Naudet's avatar
Damien Naudet committed
375

376
_SQRT_2_PI = np.sqrt(2 * np.pi)
Damien Naudet's avatar
Damien Naudet committed
377

Damien Naudet's avatar
Damien Naudet committed
378

379 380 381
# TODO double check
def gaussian_fit(axis, signal):
    """Returns gaussian fitting information
Damien Naudet's avatar
Damien Naudet committed
382

383 384
    parameters: (a, c, s)
    and f(x) = (a / (sqrt(2 * pi) * s)) * exp(- 0.5 * ((x - c) / s)^2)
Damien Naudet's avatar
Damien Naudet committed
385

386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
    :param axis: 1D x data
    :param signal: 1D y data
    :return: Area, center, sigma, status
        ('Area', 'Center', 'Sigma', 'status)
    :rtype: List[Union[float,bool]]
    """
    # compute guess
    area = signal.sum() * (axis[-1] - axis[0]) / len(axis)
    center = axis[signal.argmax()]
    sigma = area / (signal.max() * _SQRT_2_PI)

    # Fit a gaussian
    result = leastsq(_gaussian_err,
                     x0=(area, center, sigma),
                     args=(axis, signal),
                     maxfev=100000,
                     full_output=True)

    if result[4] not in [1, 2, 3, 4]:
        return float('nan'), float('nan'), float('nan'), False

    else:
        area, center, sigma = result[0]
        return float(area), float(center), float(sigma), True