XsocsH5.py 13.2 KB
Newer Older
Damien Naudet's avatar
Damien Naudet committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2015-2016 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/

from __future__ import absolute_import

__authors__ = ["D. Naudet"]
__license__ = "MIT"
__date__ = "15/09/2016"

32
import weakref
Damien Naudet's avatar
WIP    
Damien Naudet committed
33
from collections import OrderedDict, namedtuple
34
35
36
37
38
from contextlib import contextmanager

import h5py as _h5py
import numpy as _np

Damien Naudet's avatar
Damien Naudet committed
39
from .XsocsH5Base import XsocsH5Base
40
41


Damien Naudet's avatar
Damien Naudet committed
42
43
class InvalidEntryError(Exception):
    pass
44
45


Damien Naudet's avatar
WIP    
Damien Naudet committed
46
47
48
ScanPositions = namedtuple('ScanPositions',
                           ['motor_0', 'pos_0', 'motor_1', 'pos_1', 'shape'])

49
50
51
MOTORCOLS = {"pix":"adcY",
             "piy":"adcX",
             "piz":"adcZ"}
Damien Naudet's avatar
WIP    
Damien Naudet committed
52

53
54
55
56
57
58
59
60
61
62
63
64

def _process_entry(method):
    def _method(inst, entry=None, *args, **kwargs):
        if entry is None:
            entry = inst.get_entry_name()
        elif isinstance(entry, int):
            entry = inst.get_entry_name(entry)
        return method(inst, entry, *args, **kwargs)
    return _method



65
66
67
68
69
70
71
class XsocsH5(XsocsH5Base):

    TOP_ENTRY = 'global'
    positioners_tpl = '/{0}/instrument/positioners'
    img_data_tpl = '/{0}/measurement/image/data'
    measurement_tpl = '/{0}/measurement'
    detector_tpl = '/{0}/instrument/detector'
Damien Naudet's avatar
Damien Naudet committed
72
    scan_params_tpl = '/{0}/scan'
73
74
75
76
77
78

    def __init__(self, h5_f, mode='r'):
        super(XsocsH5, self).__init__(h5_f, mode=mode)

        self.__entries = None

79
    @_process_entry
80
81
82
    def title(self, entry):
        with self._get_file() as h5_file:
            path = entry + '/title'
83
            return h5_file[path][()]
84

85
    @_process_entry
86
87
88
89
90
91
    def entry_filename(self, entry):
        with self._get_file() as h5_file:
            return h5_file[entry].file.filename

    def _update_entries(self):
        with self._get_file() as h5_file:
92
93
94
95
            # TODO : this isnt pretty but for some reason the attrs.get() fails
            # when there is no attribute NX_class (should return the default
            # None)
            self.__entries = sorted([key for key in h5_file
Damien Naudet's avatar
Damien Naudet committed
96
97
98
                if ('NX_class' in h5_file[key].attrs and
                    h5_file[key].attrs[
                        'NX_class'].decode() == 'NXentry')])
99
100
101
102
103
104

    def entries(self):
        if self.__entries is None:
            self._update_entries()
        return self.__entries[:]

105
    @_process_entry
106
107
108
109
    def scan_angle(self, entry):
        # TODO : get the correct angle name
        return self.positioner(entry, 'eta')

110
    def get_entry_name(self, entry_idx=0):
111
112
113
114
115
116
117
118
119
120
121
        """
        Get the entry found at position *entry_idx* (entries names sorted
        alphabeticaly).
        Raises InvalidEntryError if the entry is not found.
        """
        try:
            return self.entries()[entry_idx]
        except IndexError:
            raise InvalidEntryError('Entry not found (entry_idx={0}).'
                                    ''.format(entry_idx))

122
    @_process_entry
123
124
125
126
127
128
129
130
    def __detector_params(self, entry, param_names):
        with self._get_file() as h5_file:
            path = self.detector_tpl.format(entry) + '/{0}'
            if isinstance(param_names, (list, set, tuple)):
                return [h5_file.get(path.format(param), _np.array(None))[()]
                        for param in param_names]
            return h5_file.get(path.format(param_names), _np.array(None))[()]

131
    @_process_entry
132
133
134
    def beam_energy(self, entry):
        return self.__detector_params(entry, 'beam_energy')

135
    @_process_entry
136
137
138
139
    def direct_beam(self, entry):
        return self.__detector_params(entry, ['center_chan_dim0',
                                              'center_chan_dim1'])

140
    @_process_entry
141
142
143
144
    def chan_per_deg(self, entry):
        return self.__detector_params(entry, ['chan_per_deg_dim0',
                                              'chan_per_deg_dim1'])

145
    @_process_entry
146
147
148
149
150
    def n_images(self, entry):
        # TODO : make sure that data.ndims = 3
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, shape=True)[0]

151
    @_process_entry
152
153
154
155
156
    def image_size(self, entry):
        # TODO : make sure that data.ndims = 3
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, shape=True)[1:3]

157
    @_process_entry
158
159
160
161
    def image_dtype(self, entry):
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, dtype=True)

162
    @_process_entry
163
164
165
    def dset_shape(self, path):
        return self._get_array_data(path, shape=True)

166
    @_process_entry
Damien Naudet's avatar
Damien Naudet committed
167
    def image_cumul(self, entry, dtype=None):
168
169
        """
        Returns the summed intensity for each image.
Damien Naudet's avatar
Damien Naudet committed
170
171
172
        :param dtype: dtype passed to the numpy.sum function.
            Default is numpy.double.
        :type dtype: numpy.dtype
173
        """
Damien Naudet's avatar
Damien Naudet committed
174
175
176
177
178
        if dtype is None:
            dtype = _np.double

        with self.image_dset_ctx(entry) as ctx:
            shape = ctx.shape
Damien Naudet's avatar
WIP    
Damien Naudet committed
179
            intensity = _np.zeros(shape=(shape[0],), dtype=dtype)
Damien Naudet's avatar
Damien Naudet committed
180
            img_buffer = _np.array(ctx[0], dtype=dtype)
181
            for idx in range(0, shape[0]):
Damien Naudet's avatar
Damien Naudet committed
182
183
184
                ctx.read_direct(img_buffer, idx)
                intensity[idx] = _np.sum(img_buffer)
        return intensity
185

186
    @_process_entry
187
188
    def scan_positions(self, entry):
        path = self.measurement_tpl.format(entry)
189
        params = self.scan_params(entry)
190
191
        m0 = '/{0}'.format(MOTORCOLS[params['motor_0'].decode()])
        m1 = '/{0}'.format(MOTORCOLS[params['motor_1'].decode()])
Damien Naudet's avatar
WIP    
Damien Naudet committed
192
193
        n_0 = params['motor_0_steps']
        n_1 = params['motor_1_steps']
194
195
196

        x_pos = self._get_array_data(path + m0)
        y_pos = self._get_array_data(path + m1)
Damien Naudet's avatar
WIP    
Damien Naudet committed
197
198
199
200
201
        return ScanPositions(motor_0=params['motor_0'],
                             pos_0=x_pos,
                             motor_1=params['motor_1'],
                             pos_1=y_pos,
                             shape=(n_0, n_1))
202

203
    @_process_entry
204
205
206
207
208
209
210
211
212
213
214
215
    def acquisition_params(self, entry):
        beam_energy = self.beam_energy(entry)
        direct_beam = self.direct_beam(entry)
        chan_per_deg = self.chan_per_deg(entry)

        result = OrderedDict()
        result['beam_energy'] = beam_energy
        result['direct_beam'] = direct_beam
        result['chan_per_deg'] = chan_per_deg

        return result

216
    @_process_entry
Damien Naudet's avatar
Damien Naudet committed
217
218
219
220
221
222
223
224
225
    def is_regular_grid(self, entry):
        # TODO
        """
        For now grids are always regular
        :param entry:
        :return:
        """
        return True

226
    @_process_entry
227
    def scan_params(self, entry):
Damien Naudet's avatar
Damien Naudet committed
228
229
        # TODO : make this more generic to make it compatible
        #  with irregular grids
Damien Naudet's avatar
Damien Naudet committed
230
231
232
233
234
235
236
        param_names = ['motor_0', 'motor_0_start',
                       'motor_0_end', 'motor_0_steps',
                       'motor_1', 'motor_1_start',
                       'motor_1_end', 'motor_1_steps',
                       'delay']
        with self._get_file() as h5_file:
            path = self.scan_params_tpl.format(entry) + '/{0}'
Damien Naudet's avatar
Damien Naudet committed
237
238
239
            return OrderedDict([(param, h5_file.get(path.format(param),
                                                    _np.array(None))[()])
                                for param in param_names])
240

241
    @_process_entry
242
243
244
245
    def positioner(self, entry, positioner):
        path = self.positioners_tpl.format(entry) + '/' + positioner
        return self._get_scalar_data(path)

246
    @_process_entry
247
248
249
250
251
    def measurement(self, entry, measurement):
        path = self.measurement_tpl.format(entry) + '/' + measurement
        return self._get_array_data(path)

    @contextmanager
252
    @_process_entry
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    def image_dset_ctx(self,
                       entry,
                       create=False,
                       **kwargs):
        """
        Context manager for the image dataset.
        WARNING: only to be used as a context manager!
        """
        dset_path = self.img_data_tpl.format(entry)
        with self._get_file() as h5_file:
            if create:
                try:
                    image_dset = h5_file.require_dataset(dset_path,
                                                         **kwargs)
                except TypeError:
                    image_dset = h5_file.create_dataset(dset_path,
                                                        **kwargs)
            else:
                image_dset = h5_file[dset_path]
            yield weakref.proxy(image_dset)
            del image_dset


Damien Naudet's avatar
Damien Naudet committed
276
class XsocsH5Writer(XsocsH5):
277
278

    def __init__(self, h5_f, mode='a', **kwargs):
Damien Naudet's avatar
Damien Naudet committed
279
        super(XsocsH5Writer, self).__init__(h5_f, mode=mode, **kwargs)
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

    def __set_detector_params(self, entry, params):
        with self._get_file() as h5_file:
            path = self.detector_tpl.format(entry) + '/{0}'
            for param_name, param_value in params.items():
                self._set_scalar_data(path.format(param_name), param_value)

    def set_beam_energy(self, beam_energy, entry):
        return self.__set_detector_params(entry, {'beam_energy': beam_energy})

    def set_direct_beam(self, direct_beam, entry):
        value = {'center_chan_dim0': direct_beam[0],
                 'center_chan_dim1': direct_beam[1]}
        return self.__set_detector_params(entry, value)

    def set_chan_per_deg(self, chan_per_deg, entry):
        value = {'chan_per_deg_dim0': chan_per_deg[0],
                 'chan_per_deg_dim1': chan_per_deg[1]}
        return self.__set_detector_params(entry, value)

    def set_scan_params(self,
                        entry,
                        motor_0,
                        motor_0_start,
                        motor_0_end,
                        motor_0_steps,
                        motor_1,
                        motor_1_start,
                        motor_1_end,
                        motor_1_steps,
                        delay,
                        **kwargs):
Damien Naudet's avatar
Damien Naudet committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325

        params = OrderedDict([('motor_0', _np.string_(motor_0)),
                              ('motor_0_start', float(motor_0_start)),
                              ('motor_0_end', float(motor_0_end)),
                              ('motor_0_steps', int(motor_0_steps)),
                              ('motor_1', _np.string_(motor_1)),
                              ('motor_1_start', float(motor_1_start)),
                              ('motor_1_end', float(motor_1_end)),
                              ('motor_1_steps', int(motor_1_steps)),
                              ('delay', float(delay))])
        with self._get_file():
            path = self.scan_params_tpl.format(entry) + '/{0}'
            for param_name, param_value in params.items():
                self._set_scalar_data(path.format(param_name), param_value)
326
327
328
329
330
331
332
333
334
335
336

    def create_entry(self, entry):
        with self._get_file() as h5_file:
            entry_grp = h5_file.require_group(entry)
            entry_grp.attrs['NX_class'] = _np.string_('NXentry')

            # creating mandatory groups and setting their Nexus attributes
            grp = entry_grp.require_group('measurement/image')
            grp.attrs['interpretation'] = _np.string_('image')

            # setting the nexus classes
337
            #entry_grp.attrs['NX_class'] = _np.string_('NXentry')
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

            grp = entry_grp.require_group('instrument')
            grp.attrs['NX_class'] = _np.string_('NXinstrument')

            grp = entry_grp.require_group('instrument/detector')
            grp.attrs['NX_class'] = _np.string_('NXdetector')

            grp = entry_grp.require_group('instrument/positioners')
            grp.attrs['NX_class'] = _np.string_('NXcollection')

            grp = entry_grp.require_group('measurement')
            grp.attrs['NX_class'] = _np.string_('NXcollection')

            grp = entry_grp.require_group('measurement/image')
            grp.attrs['NX_class'] = _np.string_('NXcollection')

Damien Naudet's avatar
Damien Naudet committed
354
            # creating some links
355
356
357
358
359
            grp = entry_grp.require_group('measurement/image')
            det_grp = entry_grp.require_group('instrument/detector')
            grp['info'] = det_grp
            det_grp['data'] = _h5py.SoftLink(self.img_data_tpl.format(entry))

Damien Naudet's avatar
Damien Naudet committed
360
            self._update_entries()
361
362


Damien Naudet's avatar
Damien Naudet committed
363
class XsocsH5MasterWriter(XsocsH5Writer):
364
365
366
367

    def add_entry_file(self, entry, entry_file):
        with self._get_file() as h5_file:
            h5_file[entry] = _h5py.ExternalLink(entry_file, entry)
Damien Naudet's avatar
Damien Naudet committed
368
369
370
371


if __name__ == '__main__':
    pass