peak_fit.py 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#!/usr/bin/python
# coding: utf8
# /*##########################################################################
#
# Copyright (c) 2015-2016 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/

Damien Naudet's avatar
WIP  
Damien Naudet committed
27 28
from __future__ import absolute_import

29 30 31 32
__authors__ = ["D. Naudet"]
__date__ = "01/06/2016"
__license__ = "MIT"

33
import logging
Thomas Vincent's avatar
Thomas Vincent committed
34
import functools
35
import ctypes
Thomas Vincent's avatar
Thomas Vincent committed
36
import multiprocessing
Damien Naudet's avatar
Damien Naudet committed
37
from threading import Thread
38 39 40
import multiprocessing.sharedctypes as mp_sharedctypes

import numpy as np
41
from scipy.optimize import leastsq
42

Thomas Vincent's avatar
Thomas Vincent committed
43 44
from silx.math.fit import snip1d

Thomas Vincent's avatar
Thomas Vincent committed
45
from ... import config
Damien Naudet's avatar
Damien Naudet committed
46
from ...io import QSpaceH5
47
from ...io.FitH5 import BackgroundTypes
48
from ...util import gaussian, project
49
from .fitresults import FitResult
50

51 52 53 54

_logger = logging.getLogger(__name__)


55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
def background_estimation(mode, data):
    """Estimates a background of mode kind for data

    :param BackgroundTypes mode: The kind of background to compute
    :param numpy.ndarray data: The data array to process
    :return: The estimated background as an array with same shape as input
    :rtype: numpy.ndarray
    :raises ValueError: In case mode is not known
    """
    # Background subtraction
    if mode == BackgroundTypes.CONSTANT:
        # Shift data so that smallest value is 0
        return np.ones_like(data) * np.nanmin(data)

    elif mode == BackgroundTypes.LINEAR:
        # Simple linear background
        return np.linspace(data[0], data[-1], num=len(data), endpoint=True)

73 74 75 76
    elif mode == BackgroundTypes.SNIP:
        # Using snip background
        return snip1d(data, snip_width=len(data))

77 78 79 80 81 82 83
    elif mode == BackgroundTypes.NONE:
        return np.zeros_like(data)

    else:
        raise ValueError("Unsupported background mode")


84 85 86 87 88 89
class FitTypes(object):
    """Kind of fit available"""
    ALLOWED = range(2)
    GAUSSIAN, CENTROID = ALLOWED


Damien Naudet's avatar
Damien Naudet committed
90
class PeakFitter(Thread):
Damien Naudet's avatar
Damien Naudet committed
91
    """
Thomas Vincent's avatar
Thomas Vincent committed
92
    :param str qspace_f: path to the HDF5 file containing the qspace cubes
Damien Naudet's avatar
Damien Naudet committed
93

Thomas Vincent's avatar
Thomas Vincent committed
94
    :param FitTypes fit_type:
Damien Naudet's avatar
Damien Naudet committed
95 96

    :param indices: indices of the cubes (in the input HDF5 dataset) for which
97
        the dim0/dim1/dim2 peaks coordinates will be computed. E.g : if the array
Damien Naudet's avatar
Damien Naudet committed
98
        [1, 2, 3] is provided, only those cubes will be fitted.
Thomas Vincent's avatar
Thomas Vincent committed
99
    :type indices: *optional* `array_like`
Damien Naudet's avatar
Damien Naudet committed
100

Thomas Vincent's avatar
Thomas Vincent committed
101 102
    :param Union[int,None] n_proc:
        Number of process to use. If None, the config value is used.
103 104

    :param BackgroundTypes background: The background subtraction to perform
Damien Naudet's avatar
Damien Naudet committed
105
    """
Damien Naudet's avatar
Damien Naudet committed
106

Damien Naudet's avatar
Damien Naudet committed
107 108 109 110
    READY, RUNNING, DONE, ERROR, CANCELED = __STATUSES = range(5)

    def __init__(self,
                 qspace_f,
Damien Naudet's avatar
Damien Naudet committed
111
                 fit_type=FitTypes.GAUSSIAN,
Damien Naudet's avatar
Damien Naudet committed
112 113
                 indices=None,
                 n_proc=None,
114
                 roi_indices=None,
Thomas Vincent's avatar
Thomas Vincent committed
115
                 background=BackgroundTypes.NONE):
Damien Naudet's avatar
Damien Naudet committed
116 117 118 119
        super(PeakFitter, self).__init__()

        self.__results = None
        self.__thread = None
Damien Naudet's avatar
Damien Naudet committed
120
        self.__callback = None
Damien Naudet's avatar
Damien Naudet committed
121 122 123 124 125 126 127

        self.__status = self.READY

        self.__indices = None

        self.__qspace_f = qspace_f
        self.__fit_type = fit_type
128
        self.__background = background
Damien Naudet's avatar
Damien Naudet committed
129

130
        self.__n_proc = n_proc if n_proc else config.DEFAULT_PROCESS_NUMBER
Damien Naudet's avatar
Damien Naudet committed
131
        self.__shared_progress = mp_sharedctypes.RawArray(ctypes.c_int32,
132
                                                          self.__n_proc)
Damien Naudet's avatar
Damien Naudet committed
133 134

        if roi_indices is not None:
Damien Naudet's avatar
Damien Naudet committed
135
            self.__roi_indices = np.array(roi_indices[:])
Damien Naudet's avatar
Damien Naudet committed
136 137 138 139 140
        else:
            self.__roi_indices = None

        if fit_type not in FitTypes.ALLOWED:
            self.__set_status(self.ERROR)
141 142 143 144 145
            raise ValueError('Unknown fit type: {0}'.format(fit_type))

        if background not in BackgroundTypes.ALLOWED:
            self.__set_status(self.ERROR)
            raise ValueError('Unknown background type: {}'.format(background))
146

Damien Naudet's avatar
Damien Naudet committed
147 148 149 150
        try:
            with QSpaceH5.QSpaceH5(qspace_f) as qspace_h5:
                with qspace_h5.qspace_dset_ctx() as dset:
                    qdata_shape = dset.shape
Damien Naudet's avatar
Damien Naudet committed
151

Damien Naudet's avatar
Damien Naudet committed
152
                n_points = qdata_shape[0]
153

Damien Naudet's avatar
Damien Naudet committed
154
                if indices is None:
Damien Naudet's avatar
Damien Naudet committed
155
                    indices = list(range(n_points))
Damien Naudet's avatar
Damien Naudet committed
156 157 158 159 160
                else:
                    indices = indices[:]
        except IOError:
            self.__set_status(self.ERROR)
            raise
Damien Naudet's avatar
Damien Naudet committed
161

Damien Naudet's avatar
Damien Naudet committed
162
        self.__indices = np.array(indices)
Damien Naudet's avatar
Damien Naudet committed
163 164 165 166 167 168 169

    def __set_status(self, status):
        assert status in self.__STATUSES
        self.__status = status

    status = property(lambda self: self.__status)

Damien Naudet's avatar
Damien Naudet committed
170 171
    results = property(lambda self: self.__results)

172
    def peak_fit(self, blocking=True, callback=None):
Damien Naudet's avatar
Damien Naudet committed
173 174 175 176 177 178 179 180
        if self.__thread and self.__thread.is_alive():
            raise RuntimeError('A fit is already in progress.')

        self.__results = None

        if blocking:
            return self.__peak_fit()
        else:
Thomas Vincent's avatar
Thomas Vincent committed
181
            self.__thread = Thread(target=self.__peak_fit)
Damien Naudet's avatar
Damien Naudet committed
182
            self.__callback = callback
Thomas Vincent's avatar
Thomas Vincent committed
183
            self.__thread.start()
Damien Naudet's avatar
Damien Naudet committed
184 185 186 187 188 189 190 191 192

    def progress(self):
        return (100.0 *
                np.frombuffer(self.__shared_progress, dtype='int32').max() /
                (len(self.__indices) - 1))

    def __peak_fit(self):
        self.__set_status(self.RUNNING)

193
        # TODO
194
        progress = np.frombuffer(self.__shared_progress, dtype='int32')
Damien Naudet's avatar
Damien Naudet committed
195
        progress[:] = 0
196

Thomas Vincent's avatar
Thomas Vincent committed
197
        pool = multiprocessing.Pool(self.__n_proc)
198 199 200 201 202 203 204
        fit_results = pool.map(
            functools.partial(_fit_process,
                              qspace_f=self.__qspace_f,
                              fit_type=self.__fit_type,
                              background_type=self.__background,
                              roiIndices=self.__roi_indices),
            self.__indices)
Damien Naudet's avatar
Damien Naudet committed
205 206 207
        pool.close()
        pool.join()

208
        # Prepare FitResult object
Thomas Vincent's avatar
Thomas Vincent committed
209
        with QSpaceH5.QSpaceH5(self.__qspace_f) as qspace_h5:
210 211
            x_pos = qspace_h5.sample_x[self.__indices]
            y_pos = qspace_h5.sample_y[self.__indices]
212
            q_dim0, q_dim1, q_dim2 = qspace_h5.qspace_dimension_values
Damien Naudet's avatar
Damien Naudet committed
213

214 215 216 217
        if self.__roi_indices is not None:
            q_dim0 = q_dim0[self.__roi_indices[0][0]:self.__roi_indices[0][1]]
            q_dim1 = q_dim1[self.__roi_indices[1][0]:self.__roi_indices[1][1]]
            q_dim2 = q_dim2[self.__roi_indices[2][0]:self.__roi_indices[2][1]]
Damien Naudet's avatar
Damien Naudet committed
218

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        if self.__fit_type == FitTypes.GAUSSIAN:
            fit_name = 'Gaussian'
            result_name = 'gauss_0'
            result_dtype = [('Area', np.float64),
                            ('Center', np.float64),
                            ('Sigma', np.float64),
                            ('Status', np.bool_)]

        elif self.__fit_type == FitTypes.CENTROID:
            fit_name = 'Centroid'
            result_name = 'centroid'
            result_dtype = [('COM', np.float64),
                            ('I_sum', np.float64),
                            ('I_max', np.float64),
                            ('Pos_max', np.float64),
                            ('Status', np.bool_)]

        else:
            raise RuntimeError('Unknown Fit Type')
Damien Naudet's avatar
Damien Naudet committed
238

239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
        results = FitResult(entry=fit_name,
                            sample_x=x_pos,
                            sample_y=y_pos,
                            q_x=q_dim0,
                            q_y=q_dim1,
                            q_z=q_dim2,
                            background_mode=self.__background)
        fit_results = np.array(fit_results, dtype=result_dtype)
        # From points x axes to axes x points
        fit_results = np.transpose(fit_results)
        for axis_index, array in enumerate(fit_results):
            for name, _ in result_dtype[:-1]:
                results._add_axis_result(result_name, axis_index, name, array[name])
            results._set_axis_status(axis_index, array['Status'])

        self.__results = results
Damien Naudet's avatar
Damien Naudet committed
255 256 257

        self.__set_status(self.DONE)

Damien Naudet's avatar
Damien Naudet committed
258 259 260
        if self.__callback:
            self.__callback()

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
        return results


def _fit_process(index,
                 qspace_f,
                 fit_type=FitTypes.GAUSSIAN,
                 background_type=BackgroundTypes.NONE,
                 roiIndices=None):
    """Run fit processing.

    It loads a QSpace, extracts a ROI from it, project to axes,
    and then for each axis, it subtracts a background and performs a fit/COM.

    This function is run through a multiprocessing.Pool

    :param int index: The index of the QSpace to process
    :param str qspace_f: Filename of the hdf5 file containing QSpace
    :param FitTypes fit_type: The kind of fit to perform
    :param BackgroundTypes background_type:
        The kind of background subtraction to perform
    :param Union[List[List[int]],None] roiIndices:
        Optional QSpace ROI start:end in the 3 dimensions
    :return: Fit results as a list of results for dim0, dim1 and dim2
    :rtype: List[List[Union[float,bool]]]
    """
    # Read data from file
    with QSpaceH5.QSpaceH5(qspace_f) as qspace_h5:
        axes = qspace_h5.qspace_dimension_values
        hits = qspace_h5.histo
        qspace = qspace_h5.qspace_slice(index)

    # apply Qspace ROI
    if roiIndices is not None:
        dim0Slice = slice(roiIndices[0][0], roiIndices[0][1], 1)
        dim1Slice = slice(roiIndices[1][0], roiIndices[1][1], 1)
        dim2Slice = slice(roiIndices[2][0], roiIndices[2][1], 1)

        axes = [axis[roi] for axis, roi in
                zip(axes, (dim0Slice, dim1Slice, dim2Slice))]
        hits = hits[dim0Slice, dim1Slice, dim2Slice]
        qspace = qspace[dim0Slice, dim1Slice, dim2Slice]

    # Normalize with hits and project to axes
    projections = project(qspace, hits)
305

306 307 308 309
    # Background subtraction
    if background_type != BackgroundTypes.NONE:
        for array in projections:
            array -= background_estimation(background_type, array)
Damien Naudet's avatar
Damien Naudet committed
310

311 312 313 314
    # Fit/COM
    fit = {FitTypes.CENTROID: centroid,
           FitTypes.GAUSSIAN: gaussian_fit}[fit_type]
    result = [fit(axis, values) for axis, values in zip(axes, projections)]
Damien Naudet's avatar
Damien Naudet committed
315

316
    return result
Damien Naudet's avatar
Damien Naudet committed
317

318

319
# Center of mass
Damien Naudet's avatar
Damien Naudet committed
320

321 322
def centroid(axis, signal):
    """Returns Center of mass and maximum information
323

324 325 326 327 328 329 330 331 332
    :param numpy.ndarray axis: 1D x data
    :param numpy.ndarray signal: 1D y data
    :return: Center of mass, sum of signal, max of signal, position of max and status
        ('COM', 'I_sum', 'I_max', 'Pos_max', 'status')
    :rtype: List[Union[float,bool]]
    """
    signal_sum = signal.sum()
    if signal_sum == 0:
        return float('nan'), float('nan'), float('nan'), float('nan'), False
Damien Naudet's avatar
Damien Naudet committed
333

334 335 336 337 338 339 340
    else:
        max_idx = signal.argmax()
        return (float(np.dot(axis, signal) / signal_sum),
                float(signal_sum),
                float(signal[max_idx]),
                float(axis[max_idx]),
                True)
Damien Naudet's avatar
Damien Naudet committed
341

342

343
# Gaussian fit
344

345 346
def _gaussian_err(parameters, axis, signal):
    """Returns difference between signal and given gaussian
Damien Naudet's avatar
Damien Naudet committed
347

348 349 350 351 352 353 354
    :param List[float] parameters: area, center, sigma
    :param numpy.ndarray axis: 1D x data
    :param numpy.ndarray signal: 1D y data
    :return:
    """
    area, center, sigma = parameters
    return gaussian(axis, area, center, sigma) - signal
355

Damien Naudet's avatar
Damien Naudet committed
356

357
_SQRT_2_PI = np.sqrt(2 * np.pi)
Damien Naudet's avatar
Damien Naudet committed
358

Damien Naudet's avatar
Damien Naudet committed
359

360 361
def gaussian_fit(axis, signal):
    """Returns gaussian fitting information
Damien Naudet's avatar
Damien Naudet committed
362

363 364
    parameters: (a, c, s)
    and f(x) = (a / (sqrt(2 * pi) * s)) * exp(- 0.5 * ((x - c) / s)^2)
Damien Naudet's avatar
Damien Naudet committed
365

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
    :param axis: 1D x data
    :param signal: 1D y data
    :return: Area, center, sigma, status
        ('Area', 'Center', 'Sigma', 'status)
    :rtype: List[Union[float,bool]]
    """
    # compute guess
    area = signal.sum() * (axis[-1] - axis[0]) / len(axis)
    center = axis[signal.argmax()]
    sigma = area / (signal.max() * _SQRT_2_PI)

    # Fit a gaussian
    result = leastsq(_gaussian_err,
                     x0=(area, center, sigma),
                     args=(axis, signal),
                     maxfev=100000,
                     full_output=True)

    if result[4] not in [1, 2, 3, 4]:
        return float('nan'), float('nan'), float('nan'), False

    else:
        area, center, sigma = result[0]
        return float(area), float(center), float(sigma), True