XsocsH5.py 15.6 KB
Newer Older
Damien Naudet's avatar
Damien Naudet committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# coding: utf-8
# /*##########################################################################
#
# Copyright (c) 2015-2016 European Synchrotron Radiation Facility
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
# ###########################################################################*/

from __future__ import absolute_import

__authors__ = ["D. Naudet"]
__license__ = "MIT"
__date__ = "15/09/2016"

32
import weakref
Damien Naudet's avatar
WIP    
Damien Naudet committed
33
from collections import OrderedDict, namedtuple
34
35
36
37
38
from contextlib import contextmanager

import h5py as _h5py
import numpy as _np

Damien Naudet's avatar
Damien Naudet committed
39
from .XsocsH5Base import XsocsH5Base
40
from ._utils import str_to_h5_utf8, find_NX_class
41
42


Damien Naudet's avatar
Damien Naudet committed
43
44
class InvalidEntryError(Exception):
    pass
45
46


Damien Naudet's avatar
WIP    
Damien Naudet committed
47
48
49
ScanPositions = namedtuple('ScanPositions',
                           ['motor_0', 'pos_0', 'motor_1', 'pos_1', 'shape'])

Thomas Vincent's avatar
Thomas Vincent committed
50
51
52
MOTORCOLS = {"pix": "adcY",
             "piy": "adcX",
             "piz": "adcZ"}
Damien Naudet's avatar
WIP    
Damien Naudet committed
53

54
55
56
57
58
59
60
61
62
63
64

def _process_entry(method):
    def _method(inst, entry=None, *args, **kwargs):
        if entry is None:
            entry = inst.get_entry_name()
        elif isinstance(entry, int):
            entry = inst.get_entry_name(entry)
        return method(inst, entry, *args, **kwargs)
    return _method


65
66
67
68
69
70
71
class XsocsH5(XsocsH5Base):

    TOP_ENTRY = 'global'
    positioners_tpl = '/{0}/instrument/positioners'
    img_data_tpl = '/{0}/measurement/image/data'
    measurement_tpl = '/{0}/measurement'
    detector_tpl = '/{0}/instrument/detector'
Damien Naudet's avatar
Damien Naudet committed
72
    scan_params_tpl = '/{0}/scan'
73
74
75
76
77
78

    def __init__(self, h5_f, mode='r'):
        super(XsocsH5, self).__init__(h5_f, mode=mode)

        self.__entries = None

79
    @_process_entry
80
81
82
    def title(self, entry):
        with self._get_file() as h5_file:
            path = entry + '/title'
83
            return h5_file[path][()]
84

85
    @_process_entry
86
87
88
89
90
91
    def entry_filename(self, entry):
        with self._get_file() as h5_file:
            return h5_file[entry].file.filename

    def _update_entries(self):
        with self._get_file() as h5_file:
92
            self.__entries = sorted(find_NX_class(h5_file, 'NXentry'))
93
94
95
96
97
98

    def entries(self):
        if self.__entries is None:
            self._update_entries()
        return self.__entries[:]

99
    @_process_entry
100
101
102
103
    def scan_angle(self, entry):
        # TODO : get the correct angle name
        return self.positioner(entry, 'eta')

104
    def get_entry_name(self, entry_idx=0):
105
106
107
108
109
110
111
112
113
114
115
        """
        Get the entry found at position *entry_idx* (entries names sorted
        alphabeticaly).
        Raises InvalidEntryError if the entry is not found.
        """
        try:
            return self.entries()[entry_idx]
        except IndexError:
            raise InvalidEntryError('Entry not found (entry_idx={0}).'
                                    ''.format(entry_idx))

116
    @_process_entry
117
118
119
120
121
122
123
124
    def __detector_params(self, entry, param_names):
        with self._get_file() as h5_file:
            path = self.detector_tpl.format(entry) + '/{0}'
            if isinstance(param_names, (list, set, tuple)):
                return [h5_file.get(path.format(param), _np.array(None))[()]
                        for param in param_names]
            return h5_file.get(path.format(param_names), _np.array(None))[()]

125
    @_process_entry
126
127
128
    def beam_energy(self, entry):
        return self.__detector_params(entry, 'beam_energy')

129
    @_process_entry
130
131
132
133
    def direct_beam(self, entry):
        return self.__detector_params(entry, ['center_chan_dim0',
                                              'center_chan_dim1'])

134
    @_process_entry
135
136
137
138
    def chan_per_deg(self, entry):
        return self.__detector_params(entry, ['chan_per_deg_dim0',
                                              'chan_per_deg_dim1'])

139
140
141
142
143
144
145
146
147
148
    @_process_entry
    def image_roi_offset(self, entry):
        """Image ROI offset that was saved in the hdf5 file

        :param str entry: Entry from which to retrieve the information
        :return: ROI offset (row_offset, column)
        :rtype: Union[List[int],None]
        """
        return self.__detector_params(entry, 'image_roi_offset')

149
    @_process_entry
150
151
152
153
154
    def n_images(self, entry):
        # TODO : make sure that data.ndims = 3
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, shape=True)[0]

155
    @_process_entry
156
157
158
159
160
    def image_size(self, entry):
        # TODO : make sure that data.ndims = 3
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, shape=True)[1:3]

161
    @_process_entry
162
163
164
165
    def image_dtype(self, entry):
        path = self.img_data_tpl.format(entry)
        return self._get_array_data(path, dtype=True)

166
    @_process_entry
167
168
169
    def dset_shape(self, path):
        return self._get_array_data(path, shape=True)

170
    @_process_entry
Damien Naudet's avatar
Damien Naudet committed
171
    def image_cumul(self, entry, dtype=None):
Thomas Vincent's avatar
Thomas Vincent committed
172
173
174
        """Returns the summed intensity for each image.

        :param str entry:
Damien Naudet's avatar
Damien Naudet committed
175
176
177
        :param dtype: dtype passed to the numpy.sum function.
            Default is numpy.double.
        :type dtype: numpy.dtype
178
        """
Damien Naudet's avatar
Damien Naudet committed
179
180
181
182
183
        if dtype is None:
            dtype = _np.double

        with self.image_dset_ctx(entry) as ctx:
            shape = ctx.shape
Damien Naudet's avatar
WIP    
Damien Naudet committed
184
            intensity = _np.zeros(shape=(shape[0],), dtype=dtype)
Damien Naudet's avatar
Damien Naudet committed
185
            img_buffer = _np.array(ctx[0], dtype=dtype)
186
            for idx in range(0, shape[0]):
Damien Naudet's avatar
Damien Naudet committed
187
188
189
                ctx.read_direct(img_buffer, idx)
                intensity[idx] = _np.sum(img_buffer)
        return intensity
190

191
    @_process_entry
192
193
    def scan_positions(self, entry):
        path = self.measurement_tpl.format(entry)
194
        params = self.scan_params(entry)
195
196
197
198
199
200

        motors = [m.decode() if hasattr(m, 'decode') else m
                  for m in (params['motor_0'], params['motor_1'])]

        m0 = '/{0}'.format(MOTORCOLS[motors[0]])
        m1 = '/{0}'.format(MOTORCOLS[motors[1]])
Damien Naudet's avatar
WIP    
Damien Naudet committed
201
202
        n_0 = params['motor_0_steps']
        n_1 = params['motor_1_steps']
203
204
205

        x_pos = self._get_array_data(path + m0)
        y_pos = self._get_array_data(path + m1)
206
        return ScanPositions(motor_0=motors[0],
Damien Naudet's avatar
WIP    
Damien Naudet committed
207
                             pos_0=x_pos,
208
                             motor_1=motors[1],
Damien Naudet's avatar
WIP    
Damien Naudet committed
209
210
                             pos_1=y_pos,
                             shape=(n_0, n_1))
211

212
    @_process_entry
213
214
215
216
217
218
219
220
221
222
223
224
    def acquisition_params(self, entry):
        beam_energy = self.beam_energy(entry)
        direct_beam = self.direct_beam(entry)
        chan_per_deg = self.chan_per_deg(entry)

        result = OrderedDict()
        result['beam_energy'] = beam_energy
        result['direct_beam'] = direct_beam
        result['chan_per_deg'] = chan_per_deg

        return result

225
    @_process_entry
Damien Naudet's avatar
Damien Naudet committed
226
    def is_regular_grid(self, entry):
Thomas Vincent's avatar
Thomas Vincent committed
227
228
229
230
        """For now grids are always regular

        :param str entry:
        :rtype: bool
Damien Naudet's avatar
Damien Naudet committed
231
        """
Thomas Vincent's avatar
Thomas Vincent committed
232
        # TODO
Damien Naudet's avatar
Damien Naudet committed
233
234
        return True

235
    @_process_entry
236
    def scan_params(self, entry):
Damien Naudet's avatar
Damien Naudet committed
237
238
        # TODO : make this more generic to make it compatible
        #  with irregular grids
Damien Naudet's avatar
Damien Naudet committed
239
240
241
242
243
244
245
        param_names = ['motor_0', 'motor_0_start',
                       'motor_0_end', 'motor_0_steps',
                       'motor_1', 'motor_1_start',
                       'motor_1_end', 'motor_1_steps',
                       'delay']
        with self._get_file() as h5_file:
            path = self.scan_params_tpl.format(entry) + '/{0}'
Damien Naudet's avatar
Damien Naudet committed
246
247
248
            return OrderedDict([(param, h5_file.get(path.format(param),
                                                    _np.array(None))[()])
                                for param in param_names])
249

250
    @_process_entry
251
252
253
254
    def positioner(self, entry, positioner):
        path = self.positioners_tpl.format(entry) + '/' + positioner
        return self._get_scalar_data(path)

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    @_process_entry
    def positioners(self, entry):
        """Returns names of positioners.

        :return: List of dataset names in positioners
        :rtype: List[str]
        """
        positioners = []

        path = self.positioners_tpl.format(entry) + '/'
        with self._get_file() as h5_file:
            for name, node in h5_file[path].items():
                if (isinstance(node, _h5py.Dataset) and
                        node.dtype.kind in 'iuf'):
                    positioners.append(name)

        return positioners

273
    @_process_entry
274
275
276
277
    def measurement(self, entry, measurement):
        path = self.measurement_tpl.format(entry) + '/' + measurement
        return self._get_array_data(path)

278
279
    @_process_entry
    def normalizers(self, entry):
280
        """Returns names of dataset in measurement that can be used to normalize data
281

282
283
        It returns names of 1D datasets with same number of elements as images
        that are available in the measurement group.
284

285
286
        :return: List of dataset names in measurement that might be normalizers
        :rtype: List[str]
287
        """
288
        normalizers = []
289
290
291
292
293
294

        nb_images = self.n_images(entry)

        path = self.measurement_tpl.format(entry) + '/'
        with self._get_file() as h5_file:
            for name, node in h5_file[path].items():
295
296
                if (isinstance(node, _h5py.Dataset) and
                        node.dtype.kind in 'iuf' and
297
                        len(node.shape) == 1 and
298
                        node.shape[0] == nb_images):
299
                    # Only get (u)int and float datasets
300
301
                    # with same number of values as number of images
                    normalizers.append(name)
302
303
304

        return normalizers

305
    @contextmanager
306
    @_process_entry
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
    def image_dset_ctx(self,
                       entry,
                       create=False,
                       **kwargs):
        """
        Context manager for the image dataset.
        WARNING: only to be used as a context manager!
        """
        dset_path = self.img_data_tpl.format(entry)
        with self._get_file() as h5_file:
            if create:
                try:
                    image_dset = h5_file.require_dataset(dset_path,
                                                         **kwargs)
                except TypeError:
                    image_dset = h5_file.create_dataset(dset_path,
                                                        **kwargs)
            else:
                image_dset = h5_file[dset_path]
            yield weakref.proxy(image_dset)
            del image_dset


Damien Naudet's avatar
Damien Naudet committed
330
class XsocsH5Writer(XsocsH5):
331

Thomas Vincent's avatar
Thomas Vincent committed
332
333
    def __init__(self, h5_f, mode='a'):
        super(XsocsH5Writer, self).__init__(h5_f, mode=mode)
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353

    def __set_detector_params(self, entry, params):
        with self._get_file() as h5_file:
            path = self.detector_tpl.format(entry) + '/{0}'
            for param_name, param_value in params.items():
                self._set_scalar_data(path.format(param_name), param_value)

    def set_beam_energy(self, beam_energy, entry):
        return self.__set_detector_params(entry, {'beam_energy': beam_energy})

    def set_direct_beam(self, direct_beam, entry):
        value = {'center_chan_dim0': direct_beam[0],
                 'center_chan_dim1': direct_beam[1]}
        return self.__set_detector_params(entry, value)

    def set_chan_per_deg(self, chan_per_deg, entry):
        value = {'chan_per_deg_dim0': chan_per_deg[0],
                 'chan_per_deg_dim1': chan_per_deg[1]}
        return self.__set_detector_params(entry, value)

354
355
356
357
358
359
360
361
362
    def set_image_roi_offset(self, offset, entry):
        """Store image ROI offset information in the hdf5 file

        :param List[int] offset:
            Offset of the ROI in pixels (row_offset, column_offset)
        :param str entry: Entry for which to store information
        """
        return self.__set_detector_params(entry, {'image_roi_offset': offset})

363
364
365
366
367
368
369
370
371
372
373
374
    def set_scan_params(self,
                        entry,
                        motor_0,
                        motor_0_start,
                        motor_0_end,
                        motor_0_steps,
                        motor_1,
                        motor_1_start,
                        motor_1_end,
                        motor_1_steps,
                        delay,
                        **kwargs):
Damien Naudet's avatar
Damien Naudet committed
375

376
        params = OrderedDict([('motor_0', str_to_h5_utf8(motor_0)),
Damien Naudet's avatar
Damien Naudet committed
377
378
379
                              ('motor_0_start', float(motor_0_start)),
                              ('motor_0_end', float(motor_0_end)),
                              ('motor_0_steps', int(motor_0_steps)),
380
                              ('motor_1', str_to_h5_utf8(motor_1)),
Damien Naudet's avatar
Damien Naudet committed
381
382
383
384
385
386
387
388
                              ('motor_1_start', float(motor_1_start)),
                              ('motor_1_end', float(motor_1_end)),
                              ('motor_1_steps', int(motor_1_steps)),
                              ('delay', float(delay))])
        with self._get_file():
            path = self.scan_params_tpl.format(entry) + '/{0}'
            for param_name, param_value in params.items():
                self._set_scalar_data(path.format(param_name), param_value)
389
390
391
392

    def create_entry(self, entry):
        with self._get_file() as h5_file:
            entry_grp = h5_file.require_group(entry)
393
            entry_grp.attrs['NX_class'] = str_to_h5_utf8('NXentry')
394
395
396

            # creating mandatory groups and setting their Nexus attributes
            grp = entry_grp.require_group('measurement/image')
397
            grp.attrs['interpretation'] = str_to_h5_utf8('image')
398
399

            # setting the nexus classes
400
            # entry_grp.attrs['NX_class'] = str_to_h5_utf8('NXentry')
401
402

            grp = entry_grp.require_group('instrument')
403
            grp.attrs['NX_class'] = str_to_h5_utf8('NXinstrument')
404
405

            grp = entry_grp.require_group('instrument/detector')
406
            grp.attrs['NX_class'] = str_to_h5_utf8('NXdetector')
407
408

            grp = entry_grp.require_group('instrument/positioners')
409
            grp.attrs['NX_class'] = str_to_h5_utf8('NXcollection')
410
411

            grp = entry_grp.require_group('measurement')
412
            grp.attrs['NX_class'] = str_to_h5_utf8('NXcollection')
413
414

            grp = entry_grp.require_group('measurement/image')
415
            grp.attrs['NX_class'] = str_to_h5_utf8('NXcollection')
416

Damien Naudet's avatar
Damien Naudet committed
417
            # creating some links
418
419
420
421
422
            grp = entry_grp.require_group('measurement/image')
            det_grp = entry_grp.require_group('instrument/detector')
            grp['info'] = det_grp
            det_grp['data'] = _h5py.SoftLink(self.img_data_tpl.format(entry))

Damien Naudet's avatar
Damien Naudet committed
423
            self._update_entries()
424
425


Damien Naudet's avatar
Damien Naudet committed
426
class XsocsH5MasterWriter(XsocsH5Writer):
427

428
429
430
431
432
433
434
435
436
437
    def add_entry_file(self, entry, entry_file, master_entry=None):
        """Add an external link to an entry in a sub-file

        :param str entry: Name of the entry in the sub-file
        :param str entry_file: Name of the file the entry belongs to
        :param str master_entry: Optional alternative entry name in master file
        """
        if master_entry is None:
            master_entry = entry

438
        with self._get_file() as h5_file:
439
            h5_file[master_entry] = _h5py.ExternalLink(entry_file, entry)