Skip to content
GitLab
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ixstools
xrstools
Commits
b8712718
Commit
b8712718
authored
Oct 28, 2020
by
myron
Browse files
fixing non regression tests
parent
27217b28
Changes
4
Hide whitespace changes
Inline
Side-by-side
XRStools/myMaskImageWidget.py
View file @
b8712718
...
...
@@ -46,8 +46,8 @@ class MaskImageWidget(sole_MaskImageWidget.MaskImageWidget):
self
.
plotImage
(
update
=
False
)
self
.
_emitMaskChangedSignal
()
return
#
super(MaskImageWidget, self)._graphSignal(ddict, ownsignal)
sole_MaskImageWidget
.
MaskImageWidget
.
_graphSignal
(
self
,
ddict
,
ownsignal
)
super
(
MaskImageWidget
,
self
).
_graphSignal
(
ddict
,
ownsignal
)
#
sole_MaskImageWidget.MaskImageWidget._graphSignal(self, ddict, ownsignal)
def
dragEnterEvent
(
self
,
event
):
...
...
XRStools/xrs_extraction.py
View file @
b8712718
...
...
@@ -380,7 +380,7 @@ class edge_extraction:
self
.
sqwav
=
self
.
avsignals
*
res
[
0
]
-
yres
self
.
sqwaverr
=
self
.
averrors
*
res
[
0
]
def
removeCorePearsonAv
(
self
,
element
,
edge
,
range1
,
range2
,
weights
=
[
2
,
1
],
HFcore_shift
=
0.0
,
guess
=
None
,
scaling
=
None
,
return_background
=
False
):
def
removeCorePearsonAv
(
self
,
element
,
edge
,
range1
,
range2
,
weights
=
[
2
,
1
],
HFcore_shift
=
0.0
,
guess
=
None
,
scaling
=
None
,
return_background
=
False
,
show_plots
=
True
):
"""
**removeCorePearsonAv**
"""
...
...
@@ -461,11 +461,13 @@ class edge_extraction:
print
(
'The fit parameters are: '
,
res
)
yres
=
pearson7_zeroback
(
self
.
eloss
,
res
[
0
:
4
])
+
np
.
polyval
(
res
[
4
:
6
],
self
.
eloss
)
plt
.
plot
(
self
.
eloss
,
the_signals
*
scaling
,
self
.
eloss
,
yres
+
HF_core
,
self
.
eloss
,
the_signals
*
scaling
-
yres
,
self
.
eloss
,
HF_core
)
plt
.
legend
((
'scaled data'
,
'pearson + linear + core'
,
'data - (pearson + linear)'
,
'core'
))
plt
.
draw
()
pyplot
.
show
()
if
show_plots
:
plt
.
plot
(
self
.
eloss
,
the_signals
*
scaling
,
self
.
eloss
,
yres
+
HF_core
,
self
.
eloss
,
the_signals
*
scaling
-
yres
,
self
.
eloss
,
HF_core
)
plt
.
legend
((
'scaled data'
,
'pearson + linear + core'
,
'data - (pearson + linear)'
,
'core'
))
plt
.
draw
()
pyplot
.
show
()
self
.
sqwav
=
the_signals
*
scaling
-
yres
self
.
sqwaverr
=
self
.
averrors
*
scaling
*
HF_core_norm
/
exp_norm
...
...
nonregressions/non_reg_testing_XRS.py
View file @
b8712718
...
...
@@ -114,13 +114,14 @@ if AUTOMATIC_TEST :
QTest
.
qWait
(
delay
)
QTest
.
mouseMove
(
myw
.
graph
,
pos
=
qt
.
QPoint
(
pos1
[
0
]
,
pos1
[
1
]),
delay
=-
1
)
QTest
.
qWait
(
delay
)
myw
.
graph
.
onMousePress
(
pos1
[
0
],
pos1
[
1
],
"left"
)
# QTest.mousePress( myw.graph , qt.Qt.LeftButton, pos= qt.QPoint( pos1[0] ,pos1[1]), delay=10)
print
(
myw
.
graph
)
# myw.graph.onMousePress( pos1[0], pos1[1], "left" )
QTest
.
mousePress
(
myw
.
graph
,
qt
.
Qt
.
LeftButton
,
pos
=
qt
.
QPoint
(
pos1
[
0
]
,
pos1
[
1
]),
delay
=
10
)
QTest
.
qWait
(
delay
)
QTest
.
mouseMove
(
myw
.
graph
,
pos
=
qt
.
QPoint
(
pos2
[
0
]
,
pos2
[
1
]),
delay
=
10
)
QTest
.
qWait
(
delay
)
#
QTest.mouseRelease( myw.graph , qt.Qt.LeftButton, pos= qt.QPoint( pos2[0] ,pos2[1]), delay=10)
myw
.
graph
.
onMouseRelease
(
pos2
[
0
],
pos2
[
1
],
"left"
)
QTest
.
mouseRelease
(
myw
.
graph
,
qt
.
Qt
.
LeftButton
,
pos
=
qt
.
QPoint
(
pos2
[
0
]
,
pos2
[
1
]),
delay
=
10
)
#
myw.graph.onMouseRelease( pos2[0], pos2[1], "left" )
QTest
.
qWait
(
delay
)
QTest
.
mouseClick
(
w4r
.
globalSpotDectionWidget
.
relabeliseButton
,
qt
.
Qt
.
LeftButton
,
pos
=
qt
.
QPoint
(
3
,
3
))
QTest
.
qWait
(
delay
)
...
...
@@ -159,10 +160,13 @@ lw.get_spectrum_new(method='sum', include_elastic=True)
lw
.
get_tths
(
rvd
=
28.0
,
rvu
=
28.0
,
rvb
=
65.0
,
rhr
=
30.0
,
rhl
=
30.0
,
rhb
=
143.0
,
order
=
[
0
,
1
,
2
,
3
,
4
,
5
])
lw_ex
=
xrs_extraction
.
edge_extraction
(
lw
,[
'H2O'
],[
1.0
],{
'O'
:[
'K'
]})
print
(
"QUI 1 "
)
# O edge low-q
lw_ex
.
analyzerAverage
(
lowq
,
errorweighing
=
False
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
250.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
HFcore_shift
=-
5.0
,
guess
=
[
-
1.07743447e+03
,
8.42895443e+02
,
4.99035465e+01
,
3193e+01
,
-
3.80090286e-07
,
2.73774370e-03
,
5.11920401e+03
],
scaling
=
1.2
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
250.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
HFcore_shift
=-
5.0
,
guess
=
[
-
1.07743447e+03
,
8.42895443e+02
,
4.99035465e+01
,
3193e+01
,
-
3.80090286e-07
,
2.73774370e-03
,
5.11920401e+03
],
scaling
=
1.2
,
show_plots
=
True
)
lw_ex
.
save_average_Sqw
(
os
.
path
.
join
(
save_path
,
'h2o_sum_lq.dat'
),
emin
=
00.0
,
emax
=
610.0
,
normrange
=
[
520.
,
600.
])
print
(
"QUI OK"
)
def
check_results
(
fn_a
,
fn_b
):
...
...
@@ -199,7 +203,7 @@ check_results( os.path.join(save_path,'h2o_sum_lq.dat') , "h2o_sum_lq_ref.dat"
# O edge med-q
lw_ex
.
analyzerAverage
(
medq
,
errorweighing
=
False
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
300.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
HFcore_shift
=-
5.0
,
guess
=
[
-
1.39664220e+03
,
1.03655696e+03
,
7.67728511e+02
,
7.30355600e+02
,
7.93995221e-04
,
-
4.76580011e-01
,
-
1.37652621e+03
],
scaling
=
1.2
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
300.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
HFcore_shift
=-
5.0
,
guess
=
[
-
1.39664220e+03
,
1.03655696e+03
,
7.67728511e+02
,
7.30355600e+02
,
7.93995221e-04
,
-
4.76580011e-01
,
-
1.37652621e+03
],
scaling
=
1.2
,
show_plots
=
False
)
lw_ex
.
save_average_Sqw
(
save_path
+
'/h2o_sum_mq.dat'
,
emin
=
0.0
,
emax
=
610.0
,
normrange
=
[
520.0
,
600.0
])
...
...
@@ -208,7 +212,7 @@ check_results( os.path.join(save_path,'h2o_sum_mq.dat') , "h2o_sum_mq_ref.dat"
# O edge high-q
lw_ex
.
analyzerAverage
(
highq
,
errorweighing
=
False
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
52.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
guess
=
[
3.40779687e+02
,
2.57030454e+02
,
1.27747244e+03
,
4.55875194e-01
,
-
8.59501907e-06
,
1.39969288e-02
,
2.60071705e+00
],
HFcore_shift
=-
5.0
,
scaling
=
3.55
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
52.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
guess
=
[
3.40779687e+02
,
2.57030454e+02
,
1.27747244e+03
,
4.55875194e-01
,
-
8.59501907e-06
,
1.39969288e-02
,
2.60071705e+00
],
HFcore_shift
=-
5.0
,
scaling
=
3.55
,
show_plots
=
False
)
lw_ex
.
save_average_Sqw
(
save_path
+
'/h2o_sum_hq.dat'
,
emin
=
0.0
,
emax
=
600.0
,
normrange
=
[
520.0
,
600.0
])
...
...
@@ -243,7 +247,7 @@ lw_ex = xrs_extraction.edge_extraction(lw,['H2O'],[1.0],{'O':['K']})
# O edge low-q
lw_ex
.
analyzerAverage
(
lowq
,
errorweighing
=
False
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
250.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
HFcore_shift
=-
5.0
,
guess
=
[
-
1.07743447e+03
,
8.42895443e+02
,
4.99035465e+01
,
3193e+01
,
-
3.80090286e-07
,
2.73774370e-03
,
5.11920401e+03
],
scaling
=
1.2
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
250.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
HFcore_shift
=-
5.0
,
guess
=
[
-
1.07743447e+03
,
8.42895443e+02
,
4.99035465e+01
,
3193e+01
,
-
3.80090286e-07
,
2.73774370e-03
,
5.11920401e+03
],
scaling
=
1.2
,
show_plots
=
False
)
lw_ex
.
save_average_Sqw
(
save_path
+
'/h2o_pixel_lq.dat'
,
emin
=
00.0
,
emax
=
610.0
,
normrange
=
[
520.
,
600.
])
check_results
(
os
.
path
.
join
(
save_path
,
'h2o_pixel_lq.dat'
)
,
"h2o_pixel_lq_ref.dat"
)
...
...
@@ -252,7 +256,7 @@ check_results( os.path.join(save_path,'h2o_pixel_lq.dat') , "h2o_pixel_lq_ref.da
# O edge med-q
lw_ex
.
analyzerAverage
(
medq
,
errorweighing
=
False
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
300.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
HFcore_shift
=-
5.0
,
guess
=
[
-
1.39664220e+03
,
1.03655696e+03
,
7.67728511e+02
,
7.30355600e+02
,
7.93995221e-04
,
-
4.76580011e-01
,
-
1.37652621e+03
],
scaling
=
1.2
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
300.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
HFcore_shift
=-
5.0
,
guess
=
[
-
1.39664220e+03
,
1.03655696e+03
,
7.67728511e+02
,
7.30355600e+02
,
7.93995221e-04
,
-
4.76580011e-01
,
-
1.37652621e+03
],
scaling
=
1.2
,
show_plots
=
False
)
lw_ex
.
save_average_Sqw
(
save_path
+
'/h2o_pixel_mq.dat'
,
emin
=
0.0
,
emax
=
610.0
,
normrange
=
[
520.0
,
600.0
])
check_results
(
os
.
path
.
join
(
save_path
,
'h2o_pixel_mq.dat'
)
,
"h2o_pixel_mq_ref.dat"
)
...
...
@@ -260,7 +264,7 @@ check_results( os.path.join(save_path,'h2o_pixel_mq.dat') , "h2o_pixel_mq_ref.da
# O edge high-q
lw_ex
.
analyzerAverage
(
highq
,
errorweighing
=
False
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
52.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
guess
=
[
3.40779687e+02
,
2.57030454e+02
,
1.27747244e+03
,
4.55875194e-01
,
-
8.59501907e-06
,
1.39969288e-02
,
2.60071705e+00
],
HFcore_shift
=-
5.0
,
scaling
=
3.55
)
lw_ex
.
removeCorePearsonAv
(
'O'
,
'K'
,[
52.0
,
534.0
],[
570.0
,
600.0
],
weights
=
[
2
,
1
],
guess
=
[
3.40779687e+02
,
2.57030454e+02
,
1.27747244e+03
,
4.55875194e-01
,
-
8.59501907e-06
,
1.39969288e-02
,
2.60071705e+00
],
HFcore_shift
=-
5.0
,
scaling
=
3.55
,
show_plots
=
False
)
lw_ex
.
save_average_Sqw
(
save_path
+
'/h2o_pixel_hq.dat'
,
emin
=
0.0
,
emax
=
600.0
,
normrange
=
[
520.0
,
600.0
])
check_results
(
os
.
path
.
join
(
save_path
,
'h2o_pixel_hq.dat'
)
,
"h2o_pixel_hq_ref.dat"
)
nonregressions/non_reg_testing_XRS_raman_extraction.py
View file @
b8712718
...
...
@@ -375,11 +375,11 @@ myw.lineEdit_outputPrefix.setText("non_reg_output_gui_raman")
myw
.
pushButton_saveAnalysis
.
clicked
.
emit
(
True
)
qWait
(
ms
=
40
)
qWait
(
ms
=
40
0000
)
qWait
(
ms
=
40
)
check_results
(
"non_reg_output_gui_raman_lowq.txt"
,
"non_reg_output_gui_raman_reference_lowq.txt"
)
check_results
(
"non_reg_output_gui_raman_mediumq.txt"
,
"non_reg_output_gui_raman_reference_mediumq.txt"
)
check_results
(
"non_reg_output_gui_raman_highq.txt"
,
"non_reg_output_gui_raman_reference_highq.txt"
)
print
(
" OK "
)
qWait
(
ms
=
40
0000
)
qWait
(
ms
=
40
)
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment