function sf = gtDefShapeFunctionsCreateNW(sampler, eta_resoltion, varargin) % FUNCTION sf = gtDefShapeFunctionsCreateNW(sampler, eta_resoltion, varargin) % conf = struct( ... 'data_type', 'double', ... 'fast_inverse', false, ... 'fast_lines', false, ... 'compute_w_sfs', false ); conf = parse_pv_pairs(conf, varargin); p = sampler.parameters; if (~exist('eta_resoltion', 'var') || isempty(eta_resoltion)) eta_resoltion = 1; end det_ind = sampler.detector_index; om_step = gtAcqGetOmegaStep(p, det_ind); om_step_rod = tand(om_step / 2); space_res = tand(sampler.estimate_maximum_resolution() ./ 2); eta_step = 2 * atand(space_res(1)) / eta_resoltion; oversampling = 11; oversampling_w = oversampling; step_w = 1 / oversampling_w; shift_w = 0.5 - step_w / 2; oversampling_n = (oversampling - 1) / eta_resoltion + 1; step_n = 1 / oversampling_n; shift_n = 0.5 - step_n / 2; sub_space_size = tand(sampler.sampling_res / 2); % Let's first compute the W extent half_rspace_sizes = sub_space_size / 2; ref_gr = sampler.get_reference_grain(); ref_ond = ref_gr.proj(det_ind).ondet; ref_inc = ref_gr.proj(det_ind).included; ref_sel = ref_gr.proj(det_ind).selected; ref_ab_sel = ref_ond(ref_inc(ref_sel)); ref_ab_inc = ref_ond(ref_inc); num_blobs = numel(find(ref_sel)); pl_samd = ref_gr.allblobs(det_ind).plorig(ref_ab_sel, :); g = gtMathsRod2OriMat(ref_gr.R_vector'); pl_cry = gtVectorLab2Cryst(pl_samd, g)'; % pl_labd = gtGeoSam2Lab(pl_samd, eye(3), self.parameters.labgeo, self.parameters.samgeo, true)'; fprintf('Computing bounds of NW shape functions: ') c = tic(); tot_orientations = numel(sampler.lattice.gr); oris_bounds_size = [size(sampler.lattice.gr, 1), size(sampler.lattice.gr, 2), size(sampler.lattice.gr, 3)] + 1; oris_lims_min = sampler.lattice.gr{1, 1, 1}.R_vector - half_rspace_sizes; oris_lims_max = sampler.lattice.gr{end, end, end}.R_vector + half_rspace_sizes; oris_steps_x = linspace(oris_lims_min(1), oris_lims_max(1), oris_bounds_size(1)); oris_steps_y = linspace(oris_lims_min(2), oris_lims_max(2), oris_bounds_size(2)); oris_steps_z = linspace(oris_lims_min(3), oris_lims_max(3), oris_bounds_size(3)); oris_bounds = cell(oris_bounds_size); for dz = 1:oris_bounds_size(3) for dy = 1:oris_bounds_size(2) for dx = 1:oris_bounds_size(1) r_vec = [oris_steps_x(dx), oris_steps_y(dy), oris_steps_z(dz)]; oris_bounds{dx, dy, dz} = struct( ... 'phaseid', ref_gr.phaseid, ... 'center', ref_gr.center, 'R_vector', r_vec ); end end end chunk_size = 250; for ii = 1:chunk_size:numel(oris_bounds) end_chunk = min(ii+chunk_size, numel(oris_bounds)); num_chars_gr_ii = fprintf('%05d/%05d', ii, numel(oris_bounds)); oris_bounds(ii:end_chunk) = gtCalculateGrain_p( ... oris_bounds(ii:end_chunk), p, ... 'ref_omind', ref_gr.allblobs(det_ind).omind, ... 'included', ref_ab_inc ); fprintf(repmat('\b', [1 num_chars_gr_ii])); end fprintf('Done in %g seconds.\n', toc(c)) fprintf('Precomputing shared values..') % Forming the grid in orientation space, on the plane that is % perpendicular to the axis of rotation (z-axis in the w case), % where to sample the sub-regions of the orientation-space voxels if (conf.compute_w_sfs) num_poins = max(ceil(sub_space_size ./ space_res ./ 2), 5); pos_x = linspace(-half_rspace_sizes(1), half_rspace_sizes(1), num_poins(1)+1); pos_y = linspace(-half_rspace_sizes(2), half_rspace_sizes(2), num_poins(2)+1); renorm_coeff_w = (pos_x(2) - pos_x(1)) * (pos_y(2) - pos_y(1)) / prod(sub_space_size); pos_x = (pos_x(1:end-1) + pos_x(2:end)) / 2; pos_y = (pos_y(1:end-1) + pos_y(2:end)) / 2; pos_x_grid_w = reshape(pos_x, 1, [], 1); pos_x_grid_w = pos_x_grid_w(1, :, ones(1, num_poins(2))); pos_y_grid_w = reshape(pos_y, 1, 1, []); pos_y_grid_w = pos_y_grid_w(1, ones(1, num_poins(1)), :); pos_z_grid_w = zeros(1, num_poins(1), num_poins(2)); tot_sampling_points_w = num_poins(1) * num_poins(2); ones_tot_sp_w = ones(tot_sampling_points_w, 1); end ref_ws = ref_gr.allblobs(det_ind).omega(ref_ab_sel) ./ om_step; % There is no point in computing the same rotation matrices each % time, so we pre compute them here and store them for later c = tic(); % selecting Ws to find the interval ori_bounds = [oris_bounds{:}]; allblobs = [ori_bounds(:).allblobs]; w_tabs_int = [allblobs(:).omega]; w_tabs_int = w_tabs_int(ref_sel, :) ./ om_step; w_tabs_int = gtGrainAnglesTabularFix360deg(w_tabs_int, ref_ws, p); w_tabs_int = reshape(w_tabs_int, [], oris_bounds_size(1), oris_bounds_size(2), oris_bounds_size(3)); ref_ns = ref_gr.allblobs(det_ind).eta(ref_ab_sel); n_tabs_int = [allblobs(:).eta]; n_tabs_int = n_tabs_int(ref_sel, :); n_tabs_int = gtGrainAnglesTabularFix360deg(n_tabs_int, ref_ns); n_tabs_int = n_tabs_int ./ eta_step; n_tabs_int = reshape(n_tabs_int, [], oris_bounds_size(1), oris_bounds_size(2), oris_bounds_size(3)); rotcomp_w = gtMathsRotationMatrixComp(p.labgeo.rotdir', 'col'); if (conf.compute_w_sfs) rotcomp_z = gtMathsRotationMatrixComp([0, 0, 1]', 'col'); % Precomputing A matrix components for all the used omegas ref_round_int_ws = round(ref_ws + 0.5) - 0.5; ref_round_ws = ref_round_int_ws .* om_step; rot_samp_w = gtMathsRotationTensor(ref_round_ws, rotcomp_w); beamdirs = p.labgeo.beamdir * reshape(rot_samp_w, 3, []); beamdirs = reshape(beamdirs, 3, [])'; Ac_part_w = beamdirs * rotcomp_z.cos; As_part_w = beamdirs * rotcomp_z.sin; Acc_part_w = beamdirs * rotcomp_z.const; Ac_part_w = Ac_part_w(:, :, ones_tot_sp_w); As_part_w = As_part_w(:, :, ones_tot_sp_w); Acc_part_w = Acc_part_w(:, :, ones_tot_sp_w); end fprintf('\b\b: Done in %g seconds.\n', toc(c)) sf = cell(tot_orientations, 1); [o_x, o_y, o_z] = ind2sub(oris_bounds_size-1, 1:tot_orientations); fprintf('Computing NW shape functions: ') c = tic(); for ii_g = 1:tot_orientations if (mod(ii_g, chunk_size/10) == 1) currtime = toc(c); num_chars = fprintf('%05d/%05d (%g s, ETA %g s)', ... ii_g, tot_orientations, currtime, ... toc(c) / (ii_g - 1) * tot_orientations - currtime); end gr = sampler.lattice.gr{ii_g}; t = gr.allblobs(det_ind).theta(ref_sel); n = gr.allblobs(det_ind).eta(ref_sel); w = gr.allblobs(det_ind).omega(ref_sel); rot_w = gtMathsRotationTensor(w, rotcomp_w); n_1 = gr.allblobs(det_ind).eta(ref_sel) + eta_step; rot_w_1 = gtMathsRotationTensor(w + om_step, rotcomp_w); ominds = gr.allblobs(det_ind).omind(ref_sel); ssp = ((ominds == 1) | (ominds == 2)); ss12 = ssp - ~ssp; h = ss12(:, [1 1 1]) .* pl_cry'; % Extracting ospace boundaries for the given voxel w_tab_int = w_tabs_int(:, o_x(ii_g):o_x(ii_g)+1, o_y(ii_g):o_y(ii_g)+1, o_z(ii_g):o_z(ii_g)+1); w_tab_int = reshape(w_tab_int, [], 8); n_tab_int = n_tabs_int(:, o_x(ii_g):o_x(ii_g)+1, o_y(ii_g):o_y(ii_g)+1, o_z(ii_g):o_z(ii_g)+1); n_tab_int = reshape(n_tab_int, [], 8); lims_w_proj_g_int = round([min(w_tab_int, [], 2), max(w_tab_int, [], 2)]); lims_n_proj_g_int = round([min(n_tab_int, [], 2), max(n_tab_int, [], 2)]); num_ws = lims_w_proj_g_int(:, 2) - lims_w_proj_g_int(:, 1) + 1; num_ns = lims_n_proj_g_int(:, 2) - lims_n_proj_g_int(:, 1) + 1; [ref_r0, ref_r_dir] = compute_rod_line(t, n, rot_w, h, p.labgeo, p.samgeo); [ref_r0_n, ref_r_dir_n] = compute_rod_line(t, n_1, rot_w, h, p.labgeo, p.samgeo); [ref_r0_w, ref_r_dir_w] = compute_rod_line(t, n, rot_w_1, h, p.labgeo, p.samgeo); ref_r0_diff_n = ref_r0_n - ref_r0; ref_r0_diff_w = ref_r0_w - ref_r0; ref_r_dir_diff_n = ref_r_dir_n - ref_r_dir; ref_r_dir_diff_w = ref_r_dir_w - ref_r_dir; ref_inv_r_dir = 1 ./ ref_r_dir; % Translating everything to the origin ref_r0 = ref_r0 - gr.R_vector(ones(numel(t), 1), :); if (conf.compute_w_sfs) num_dws = num_ws + 1; num_dns = num_ns + 1; % Forming the grid in orientation space, on the plane that is % perpendicular to the axis of rotation (z-axis in the w case), % where to sample the sub-regions of the orientation-space voxel % that we want to integrate. r_vecs_w_samp = [pos_x_grid_w; pos_y_grid_w; pos_z_grid_w]; r_vecs_w_samp = reshape(r_vecs_w_samp, 3, []); r_vecs_w_samp = gr.R_vector(ones_tot_sp_w, :)' + r_vecs_w_samp; gs_w = gtMathsRod2OriMat(r_vecs_w_samp); % Unrolling and transposing the matrices at the same time % because we need g^-1 gs_w = reshape(gs_w, 3, [])'; ys = gs_w * pl_cry; ys = reshape(ys, 3, [], num_blobs); ys = permute(ys, [3 1 2]); % Starting here to compute initial shifts aligned with the % rounded omega, by frst doing three scalar products Ac = sum(Ac_part_w .* ys, 2); As = sum(As_part_w .* ys, 2); Acc = sum(Acc_part_w .* ys, 2); Ac = reshape(Ac, num_blobs, tot_sampling_points_w); As = reshape(As, num_blobs, tot_sampling_points_w); Acc = reshape(Acc, num_blobs, tot_sampling_points_w); D = Ac .^ 2 + As .^ 2; sinths = ss12 .* gr.allblobs(det_ind).sintheta(ref_sel); sinths = sinths(:, ones(tot_sampling_points_w, 1)); CC = Acc + sinths; DD = D - CC .^ 2; E = sqrt(DD); ok = DD > 0; % Apparently it is inverted, compared to the omega prediction % function. Should be investigated ssp = ~((ominds == 1) | (ominds == 3)); ss13 = ssp - ~ssp; ss13 = ss13(:, ones(tot_sampling_points_w, 1)); % Shift along z in orientation space, to align with the images % in proections space dz = (-As + ss13 .* ok .* E) ./ (CC - Ac); ws_disps = [ ... (lims_w_proj_g_int(:, 1) - 0.5 - ref_round_int_ws), ... (lims_w_proj_g_int(:, 2) + 0.5 - ref_round_int_ws) ]; ws_disps = tand(ws_disps .* om_step / 2); end sf_bls_nw = gtFwdSimBlobDefinition('sf_nw', num_blobs); % This is the most expensive operation because the different % sizes of the omega spread, which depends on the blob itself, % don't allow to have vectorized operations on all the blobs at % the same time for ii_b = 1:num_blobs ws = ((lims_w_proj_g_int(ii_b, 1)-shift_w):step_w:(lims_w_proj_g_int(ii_b, 2)+shift_w)) .* om_step; ones_ws = ones(oversampling_w * num_ws(ii_b), 1); ns = ((lims_n_proj_g_int(ii_b, 1)-shift_n):step_n:(lims_n_proj_g_int(ii_b, 2)+shift_n)) .* eta_step; ones_ns = ones(oversampling_n * num_ns(ii_b), 1); % It is always in x, because this is still in lab % coords! tot_vecs = oversampling_w * num_ws(ii_b) * oversampling_n * num_ns(ii_b); ones_tvecs = ones(tot_vecs, 1); if (conf.fast_lines) vars_ns = (ns - n(ii_b)) / eta_step; vars_ns = vars_ns([1 1 1], :); vars_ws = (ws - w(ii_b)) / om_step; vars_ws = vars_ws([1 1 1], :); % The system has already been translated to the origin rep_r0s = ref_r0(ii_b, :)'; rep_r0s = rep_r0s(:, ones_ns, ones_ws); vars_r0_ns = vars_ns .* ref_r0_diff_n(ii_b * ones_ns, :)'; vars_r0_ns = vars_r0_ns(:, :, ones_ws); vars_r0_ws = vars_ws .* ref_r0_diff_w(ii_b * ones_ws, :)'; vars_r0_ws = reshape(vars_r0_ws, 3, 1, []); vars_r0_ws = vars_r0_ws(:, ones_ns, :); % r0 should be defined = (h x y) / (1 + h . y) approx_r0 = rep_r0s + vars_r0_ns + vars_r0_ws; r0 = reshape(approx_r0, 3, [])'; rep_r_dirs = ref_r_dir(ii_b * ones_tvecs, :); vars_r_dir_ns = vars_ns .* ref_r_dir_diff_n(ii_b * ones_ns, :)'; vars_r_dir_ns = vars_r_dir_ns(:, :, ones_ws); vars_r_dir_ns = reshape(vars_r_dir_ns, 3, [])'; vars_r_dir_ws = vars_ws .* ref_r_dir_diff_w(ii_b * ones_ws, :)'; vars_r_dir_ws = reshape(vars_r_dir_ws, 3, 1, []); vars_r_dir_ws = vars_r_dir_ws(:, ones_ns, :); vars_r_dir_ws = reshape(vars_r_dir_ws, 3, [])'; d_vers_nw = vars_r_dir_ns + vars_r_dir_ws; % r should be defined = r0 + t * (h + y) / (1 + h . y) r_dir = rep_r_dirs + d_vers_nw; else y_lab = gtGeoPlLabFromThetaEta(t(ii_b * ones_ns), ns', p.labgeo); rot_ws = gtMathsRotationTensor(ws, rotcomp_w); rot_ws = reshape(rot_ws, 3, []); y_sam = y_lab * rot_ws; y_sam = reshape(y_sam, oversampling_n * num_ns(ii_b), 3, oversampling_w * num_ws(ii_b)); y_sam = permute(y_sam, [1 3 2]); y_sam = reshape(y_sam, [], 3); renorms = 1 + y_sam * h(ii_b, :)'; renorms = renorms(:, [1 1 1]); hh = h(ii_b * ones_tvecs, :); % r0 is defined = (h x y) / (1 + h . y) r0 = gtMathsCross(hh, y_sam) ./ renorms - gr.R_vector(ones_tvecs, :); % r is defined = r0 + t * (h + y) / (1 + h . y) r_dir = (hh + y_sam) ./ renorms; % r_dir = gtMathsNormalizeVectorsList(r_dir); end % Translating r0s to the closest point to the average R % vector, on the line r dot_r0_avgR = sum((0 - r0) .* r_dir, 2); r0 = r0 + r_dir .* dot_r0_avgR(:, [1 1 1]); % Let's now find directions and limits minus_dirs = r_dir < 0; u_lims = half_rspace_sizes(ones_tvecs, :); u_lims(minus_dirs) = -u_lims(minus_dirs); l_lims = -u_lims; if (conf.fast_inverse) inv_r_dir = ref_inv_r_dir(ii_b * ones_tvecs, :); tmp_d_inv_r = d_vers_nw .* inv_r_dir; % Approximate inverse: taylor expansion to the 1st % order, which is NOT good enough close to zero % inv_r_dir = (1 - tmp_d_inv_r) .* inv_r_dir; % Approximate inverse: taylor expansion to the 2nd % order, which seems to be good enough close to zero inv_r_dir = (1 - (1 - tmp_d_inv_r) .* tmp_d_inv_r) .* inv_r_dir; else inv_r_dir = 1 ./ r_dir; end len_to_ulims = (u_lims - r0) .* inv_r_dir; len_to_llims = (l_lims - r0) .* inv_r_dir; len_to_ulims = min(len_to_ulims, [], 2); len_to_llims = max(len_to_llims, [], 2); n_ints = len_to_ulims - len_to_llims; n_ints(n_ints < 0) = 0; n_ints = reshape(n_ints, [oversampling_n, num_ns(ii_b), oversampling_w, num_ws(ii_b)]); n_ints = sum(sum(n_ints, 1), 3); n_ints = reshape(n_ints, [num_ns(ii_b), num_ws(ii_b)]); sum_n_ints = gtMathsSumNDVol(n_ints); n_ints = n_ints ./ sum_n_ints; n_ints = cast(n_ints, conf.data_type); if (conf.compute_w_sfs) d = (ws_disps(ii_b, 1):om_step_rod:ws_disps(ii_b, 2))'; d = d(:, ones(tot_sampling_points_w, 1)) + dz(ii_b * ones(num_dws(ii_b), 1), :); w_upper_limits = min(d(2:end, :), half_rspace_sizes(3)); w_lower_limits = max(d(1:end-1, :), -half_rspace_sizes(3)); % integration is simple and linear: for every w and % xy-position, we consider the corresponding segment on the % z-direction w_ints = w_upper_limits - w_lower_limits; w_ints(w_ints < 0) = 0; w_ints = renorm_coeff_w * sum(w_ints, 2)'; disp([sum(n_ints, 1), w_ints]) pause end sf_bls_nw(ii_b).bbnim = lims_n_proj_g_int(ii_b, :) .* eta_step; sf_bls_nw(ii_b).bbwim = lims_w_proj_g_int(ii_b, :); sf_bls_nw(ii_b).intm = n_ints; sf_bls_nw(ii_b).bbsize = [num_ns(ii_b) num_ws(ii_b)]; end sf{ii_g} = sf_bls_nw; if (mod(ii_g, chunk_size/10) == 1) fprintf(repmat('\b', [1, num_chars])); end end fprintf(repmat(' ', [1, num_chars])); fprintf(repmat('\b', [1, num_chars])); fprintf('Done in %g seconds.\n', toc(c)) end function [r0, r_dir] = compute_rod_line(thetas, etas, rot_w, h, labgeo, samgeo) y_lab = gtGeoPlLabFromThetaEta(thetas, etas, labgeo); y_sam = gtGeoLab2Sam(y_lab, rot_w, labgeo, samgeo, true); renorms = 1 + sum(y_sam .* h, 2); renorms = renorms(:, [1 1 1]); % r0 is defined = (h x y) / (1 + h . y) r0 = gtMathsCross(h, y_sam) ./ renorms; % r is defined = r0 + t * (h + y) / (1 + h . y) r_dir = (h + y_sam) ./ renorms; r_dir = gtMathsNormalizeVectorsList(r_dir); end