function post_result = gt6DPostProcessOrientationSpread(test_data, result, disable_gtdisorientation, remove_axes) if (~exist('disable_gtdisorientation', 'var') || isempty(disable_gtdisorientation)) disable_gtdisorientation = false; end if (~exist('remove_axes', 'var')) remove_axes = []; end fprintf('Post-processing theoretical reconstruction:\n') c = tic(); c_in = c; fprintf('- Cropping volume: ') rec_size = [size(result.solution{1}, 1), size(result.solution{1}, 2), size(result.solution{1}, 3)]; result_size = [size(result.expected_dmvol, 1), size(result.expected_dmvol, 2), size(result.expected_dmvol, 3)]; lims = floor((rec_size - result_size) / 2) + 1; lims = [lims, (lims + result_size - 1)]; post_result.recon = cell(size(result.solution)); num_vols = numel(post_result.recon); sample_rate = 1000; num_chars = fprintf('%04d/%04d', 0, num_vols); for ii = 1:num_vols if (mod(ii, sample_rate) == 0) fprintf(repmat('\b', [1, num_chars])); fprintf(repmat(' ', [1, num_chars])); fprintf(repmat('\b', [1, num_chars])); num_chars = fprintf('%04d/%04d', ii, num_vols); end post_result.recon{ii} = result.solution{ii}(lims(1):lims(4), lims(2):lims(5), lims(3):lims(6)); end fprintf(repmat('\b', [1, num_chars])); fprintf(repmat(' ', [1, num_chars])); fprintf(repmat('\b', [1, num_chars])); post_result.avg_orientations = result.ODF6D.voxels_avg_R_vectors(lims(1):lims(4), lims(2):lims(5), lims(3):lims(6), :); tiles = gt6DComputeOrientationTiles(result.expected_dmvol, 5); fprintf('\b\b: Done %d in %g s.\n- Merging Theoretical Deviations..', num_vols, toc(c)) c = tic(); post_result.domains_theo = gt6DTileDmvol(result.expected_dmvol, tiles); fprintf('\b\b: Done in %g s.\n- Merging Reconstructed Deviations..', toc(c)) c = tic(); post_result.domains_recon = gt6DTileDmvol(post_result.avg_orientations, tiles); fprintf('\b\b: Done in %g s.\n- Finding component-wise error Distance (quick)..', toc(c)) c = tic(); [gvdm_1, dmvol_size] = gtDefDmvol2Gvdm(result.expected_dmvol); [gvdm_2, ~] = gtDefDmvol2Gvdm(post_result.avg_orientations); if ~isempty(remove_axes) gvdm_2(remove_axes, :) = gvdm_1(remove_axes, :); end diffs = gtMathsRodSum(gvdm_1, -gvdm_2); diffs = gtDefGvdm2Dmvol(diffs, dmvol_size); post_result.distance_comp_deg = 2 * atand(abs(diffs)); fprintf('\b\b: Done in %g s.\n- Finding error Distance (quick)..', toc(c)) c = tic(); post_result.distance_deg_alt = 2 * atand(sqrt(sum(diffs .^ 2, 4))); post_result.distance_deg_alt = post_result.distance_deg_alt .* single(result.expected_seg); fprintf('\b\b: Done in %g s.\n- Finding error Distance (exact)..', toc(c)) c = tic(); if (~disable_gtdisorientation) post_result.distance_deg = get_disorientation(test_data, result, post_result.avg_orientations); end fprintf('\b\b: Done in %g s.\nDone in %g.\n', toc(c), toc(c_in)) end function distances = get_disorientation(test_data, result, voxels_avg_R_vectors) vol_size = size(result.expected_dmvol(:, :, :, 1)); theo_gvdm = gtDefDmvol2Gvdm(result.expected_dmvol); reco_gvdm = gtDefDmvol2Gvdm(voxels_avg_R_vectors); cryst = test_data.parameters.cryst; symm = gtCrystGetSymmetryOperators(cryst.crystal_system, cryst.spacegroup); fprintf('\b\b: ') num_vecs = size(theo_gvdm, 2); chunk_size = 1000; distances = zeros(num_vecs, 1); for ii = 1:chunk_size:num_vecs num_chars = fprintf('%04d/%04d', ii, num_vecs); last_chunk_ind = min(num_vecs, ii + chunk_size - 1); distances(ii:last_chunk_ind) = gtDisorientation( ... theo_gvdm(:, ii:last_chunk_ind), ... reco_gvdm(:, ii:last_chunk_ind), ... symm, 'input', 'orimat', 'mode', 'passive'); fprintf(repmat('\b', [1 num_chars])); fprintf(repmat(' ', [1 num_chars])); fprintf(repmat('\b', [1 num_chars])); end distances = reshape(distances, vol_size); end