function bl = gtDefFwdProjGvdm2NW(grain, ref_sel, gv, fedpars, parameters, eta_step, det_ind, verbose) if (~exist('det_ind', 'var')) det_ind = 1; end if (~exist('verbose', 'var')) verbose = true; end o = GtConditionalOutput(verbose); o.fprintf('Forward projection (%s):\n', mfilename) nbl = numel(ref_sel); uinds = gv.used_ind; nv = numel(uinds); labgeo = parameters.labgeo; samgeo = parameters.samgeo; om_step = gtGetOmegaStepDeg(parameters, det_ind); g = gtMathsRod2OriMat(grain.R_vector); if (strcmpi(fedpars.defmethod, 'rod_rightstretch')) if (isfield(grain.allblobs, 'plcry')) pls_orig = grain.allblobs.plcry(ref_sel, :); else % We bring the plane normals back to the status of pl_cry pls_orig = grain.allblobs.plorig(ref_sel, :); pls_orig = gtVectorLab2Cryst(pls_orig, g); end else pls_orig = grain.allblobs.plorig(ref_sel, :); end sinths = grain.allblobs.sintheta(ref_sel); ominds = grain.allblobs.omind(ref_sel); ref_ws = grain.allblobs.detector(det_ind).uvw(ref_sel, 3); w_shifts = round(ref_ws); ref_ns = grain.allblobs.eta(ref_sel); n_shifts = round(ref_ns ./ eta_step); % The plane normals need to be brought in the Lab reference where the % beam direction and rotation axis are defined. % Use the Sample -> Lab orientation transformation assuming omega=0; % (vector length preserved for free vectors) pls_orig = gtGeoSam2Lab(pls_orig, eye(3), labgeo, samgeo, true, false); linear_interp = ~(isfield(fedpars, 'projector') ... && strcmpi(fedpars.projector, 'nearest')); gvpow = gv.pow(1, uinds); gvd = gv.d(:, uinds); % Deformation tensor (relative to reference state) from its components defT = gtFedDefTensorFromComps(gvd, fedpars.dcomps, fedpars.defmethod, 0); %%% Computation of indices o.fprintf(' * Computing indices and bbsizes: ') t = tic(); nw = cell(nbl, 1); nw_min = zeros(nbl, 2); nw_max = zeros(nbl, 2); valid_voxels = false(nv, nbl); for ii_b = 1:nbl num_chars = o.fprintf('%03d/%03d', ii_b, nbl); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Calculate new detector coordinates %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % New deformed plane normals and relative elongations (relative to % reference state) pl_orig = pls_orig(ii_b, :)'; % ! use plcry and not plsam to keep omega order below! [pl_samd, drel] = gtStrainPlaneNormals(pl_orig, defT); % unit column vectors % New sin(theta) sinth = sinths(ii_b) ./ drel; % Predict omega angles: 4 for each plane normal [om, pl_lab] = gtFedPredictOmegaMultiple(pl_samd, sinth, labgeo.beamdir', ... labgeo.rotdir', labgeo.rotcomp, ominds(ii_b)); valid_voxels(:, ii_b) = ~isnan(om); % Delete those where no reflection occurs if (any(isnan(om))) inds_bad = find(isnan(om)); gvd(:, inds_bad(1:min(10, numel(inds_bad)))) warning('gtFedFwdProjExact:bad_R_vectors', ... 'No diffraction from some elements after deformation (%d over %d) for blob %d.', ... numel(inds_bad), numel(om), ii_b) end nw_bl = om ./ om_step; nw_bl = gtGrainAnglesTabularFix360deg(nw_bl, ref_ws(ii_b), parameters); nw_bl = nw_bl - w_shifts(ii_b); n_bl = gtGeoEtaFromDiffVec(pl_lab', parameters.labgeo)'; n_bl = gtGrainAnglesTabularFix360deg(n_bl, ref_ns(ii_b)); n_bl = n_bl ./ eta_step - n_shifts(ii_b); nw{ii_b} = [n_bl; nw_bl]; nw_min(ii_b, :) = min(nw{ii_b}, [], 2); nw_max(ii_b, :) = max(nw{ii_b}, [], 2); o.fprintf(repmat('\b', [1, num_chars])); end o.fprintf('Done in %g s\n', toc(t)); o.fprintf(' * Computing max BBox size and feasibilities:\n') if (linear_interp) blob_nw_sizes = ceil(nw_max) - floor(nw_min) + 1; blob_orig_nw_shifts = 1 - floor(nw_min); else blob_nw_sizes = round(nw_max) - round(nw_min) + 1; blob_orig_nw_shifts = 1 - round(nw_min); end o.fprintf(' Computed Blob N sizes: [%s]\n', sprintf(' %d', blob_nw_sizes(:, 1))); o.fprintf(' Computed Blob W sizes: [%s]\n', sprintf(' %d', blob_nw_sizes(:, 2))); bl = gtFwdSimBlobDefinition('sf_nw', nbl); %%% Blob projection o.fprintf(' * Projecting volumes: ') t = tic(); for ii_b = 1:nbl num_chars = o.fprintf('%03d/%03d', ii_b, nbl); % Detector coordinates U,V in blob nw_bl = nw{ii_b} + blob_orig_nw_shifts(ii_b * ones(1, nv), :)'; % Let's now filter valid voxels nw_bl = nw_bl(:, valid_voxels(:, ii_b))'; gvpow_v = reshape(gvpow(valid_voxels(:, ii_b)), [], 1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Sum intensities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Distribute value over 8 pixels if (linear_interp) [inds_nw, ints_nw] = gtMathsGetInterpolationIndices(nw_bl, ... gvpow_v, fedpars.bltype); else inds_nw = round(nw_bl); ints_nw = gvpow_v; end % Accumulate all intensities in the blob voxel-wise % 'uvw' needs to be nx1; 'ints' is now 1xnx8 try bl(ii_b).intm = accumarray(inds_nw, ints_nw, blob_nw_sizes(ii_b, :)); catch mexc fprintf(['\n\nERROR\nThe error is probably caused by the' ... ' projected intensities falling outside the blob volume.' ... '\nTry increasing the blob volume padding:' ... ' fedpars.detector(det_ind).blobsizeadd, or FIXING' ... ' YOUR CODE!!\n\n']) disp('Blob ID:') disp(ii_b) disp('Blob size:') disp(blob_nw_sizes(ii_b)) disp('Min projected NW coordinate:') fprintf('\t%g\t%g \t(rounded: %d %d )\n', ... min(nw_bl, [], 1), min(inds_nw, [], 1)) disp('Max projected W coordinate:') fprintf('\t%g \t(rounded: %d )\n', ... max(nw_bl, [], 1), max(inds_nw, [], 1)) new_exc = GtFedExceptionFwdProj(mexc, det_ind, [0 0 0]); throw(new_exc) end bl(ii_b).bbsize = blob_nw_sizes(ii_b, :); bl(ii_b).bbnim = ([nw_min(ii_b, 1), nw_max(ii_b, 1)] + n_shifts(ii_b)) .* eta_step; im_w_low_lim = w_shifts(ii_b) - blob_orig_nw_shifts(ii_b, 2) + 1; bl(ii_b).bbwim = [im_w_low_lim, im_w_low_lim + bl(ii_b).bbsize(2) - 1]; o.fprintf(repmat('\b', [1, num_chars])); end o.fprintf('Done in %g s\n', toc(t)); end