diff --git a/zUtil_Deformation/GtOrientationSampling.m b/zUtil_Deformation/GtOrientationSampling.m index 7eb655c03c6a18a8ad7bf20835f0425c71e5ede0..467c03734d506887c26072374e65fb464cc825cc 100644 --- a/zUtil_Deformation/GtOrientationSampling.m +++ b/zUtil_Deformation/GtOrientationSampling.m @@ -739,6 +739,405 @@ classdef GtOrientationSampling < handle fprintf('Done in %g seconds.\n', toc(c)) end + function sf = compute_shape_functions_nw(self, compute_w_sfs) + % FUNCTION sf = compute_shape_functions_nw(self) + % + + if (~exist('compute_w_sfs', 'var') || isempty(compute_w_sfs)) + compute_w_sfs = false; + end + + om_step = gtGetOmegaStepDeg(self.parameters, self.detector_index); + om_step_rod = tand(om_step / 2); + + oversampling = 11; + step = 1 / oversampling; + shift = 0.5 - step / 2; + + sub_space_size = self.stats.sampling.gaps; + + % Let's first compute the W extent + half_rspace_sizes = sub_space_size / 2; + + ref_inds = self.selected; + num_blobs = numel(ref_inds); + + pl_samd = self.ref_gr.allblobs.plorig(self.ondet(self.included(ref_inds)), :); + + g = gtMathsRod2OriMat(self.ref_gr.R_vector'); + pl_cry = gtVectorLab2Cryst(pl_samd, g)'; +% pl_labd = gtGeoSam2Lab(pl_samd, eye(3), self.parameters.labgeo, self.parameters.samgeo, true, false)'; + + fprintf('Computing bounds of NW shape functions: ') + c = tic(); + tot_orientations = numel(self.lattice.gr); + + oris_bounds_size = [size(self.lattice.gr, 1), size(self.lattice.gr, 2), size(self.lattice.gr, 3)] + 1; + oris_lims_min = self.lattice.gr{1, 1, 1}.R_vector - half_rspace_sizes; + oris_lims_max = self.lattice.gr{end, end, end}.R_vector + half_rspace_sizes; + + oris_steps_x = linspace(oris_lims_min(1), oris_lims_max(1), oris_bounds_size(1)); + oris_steps_y = linspace(oris_lims_min(2), oris_lims_max(2), oris_bounds_size(2)); + oris_steps_z = linspace(oris_lims_min(3), oris_lims_max(3), oris_bounds_size(3)); + + oris_bounds = cell(oris_bounds_size); + for dx = 1:oris_bounds_size(1) + for dy = 1:oris_bounds_size(2) + for dz = 1:oris_bounds_size(3) + r_vec = [oris_steps_x(dx), oris_steps_y(dy), oris_steps_z(dz)]; + oris_bounds{dx, dy, dz} = struct( ... + 'phaseid', self.ref_gr.phaseid, ... + 'center', self.ref_gr.center, 'R_vector', r_vec ); + end + end + end + + chunk_size = 250; + for ii = 1:chunk_size:numel(oris_bounds) + end_chunk = min(ii+chunk_size, numel(oris_bounds)); + num_chars_gr_ii = fprintf('%05d/%05d', ii, numel(oris_bounds)); + + oris_bounds(ii:end_chunk) = gtCalculateGrain_p( ... + oris_bounds(ii:end_chunk), self.parameters, ... + 'ref_omind', self.ref_gr.allblobs.omind, ... + 'included', self.ondet(self.included) ); + + fprintf(repmat('\b', [1 num_chars_gr_ii])); + end + fprintf('Done in %g seconds.\n', toc(c)) + + fprintf('Precomputing shared values..') + % Forming the grid in orientation space, on the plane that is + % perpendicular to the axis of rotation (z-axis in the w case), + % where to sample the sub-regions of the orientation-space voxels + space_res = tand(self.estimate_maximum_resolution() ./ 2); + + if (compute_w_sfs) + num_poins = max(ceil(sub_space_size ./ space_res ./ 2), 5); + pos_x = linspace(-half_rspace_sizes(1), half_rspace_sizes(1), num_poins(1)+1); + pos_y = linspace(-half_rspace_sizes(2), half_rspace_sizes(2), num_poins(2)+1); + + renorm_coeff_w = (pos_x(2) - pos_x(1)) * (pos_y(2) - pos_y(1)) / prod(sub_space_size); + + pos_x = (pos_x(1:end-1) + pos_x(2:end)) / 2; + pos_y = (pos_y(1:end-1) + pos_y(2:end)) / 2; + + pos_x_grid_w = reshape(pos_x, 1, [], 1); + pos_x_grid_w = pos_x_grid_w(1, :, ones(1, num_poins(2))); + pos_y_grid_w = reshape(pos_y, 1, 1, []); + pos_y_grid_w = pos_y_grid_w(1, ones(1, num_poins(1)), :); + pos_z_grid_w = zeros(1, num_poins(1), num_poins(2)); + + tot_sampling_points_w = num_poins(1) * num_poins(2); + ones_tot_sp_w = ones(tot_sampling_points_w, 1); + end + + ref_ws = self.ref_gr.allblobs.omega(self.ondet(self.included(ref_inds))) ./ om_step; + + % There is no point in computing the same rotation matrices each + % time, so we pre compute them here and store them for later + c = tic(); + % selecting Ws to find the interval + ori_bounds = [oris_bounds{:}]; + allblobs = [ori_bounds(:).allblobs]; + w_tabs_int = [allblobs(:).omega]; + w_tabs_int = w_tabs_int(ref_inds, :) ./ om_step; + w_tabs_int = gtGrainAnglesTabularFix360deg(w_tabs_int, ref_ws, self.parameters); + w_tabs_int = reshape(w_tabs_int, [], oris_bounds_size(1), oris_bounds_size(2), oris_bounds_size(3)); + + eta_step = 2 * atand(space_res(1)); + + ref_ns = self.ref_gr.allblobs.eta(self.ondet(self.included(ref_inds))); + n_tabs_int = [allblobs(:).eta]; + n_tabs_int = n_tabs_int(ref_inds, :); + n_tabs_int = gtGrainAnglesTabularFix360deg(n_tabs_int, ref_ns); + n_tabs_int = n_tabs_int ./ eta_step; + n_tabs_int = reshape(n_tabs_int, [], oris_bounds_size(1), oris_bounds_size(2), oris_bounds_size(3)); + + rotcomp_w = gtMathsRotationMatrixComp(self.parameters.labgeo.rotdir', 'col'); + + if (compute_w_sfs) + rotcomp_z = gtMathsRotationMatrixComp([0, 0, 1]', 'col'); + + % Precomputing A matrix components for all the used omegas + ref_round_int_ws = round(ref_ws + 0.5) - 0.5; + ref_round_ws = ref_round_int_ws .* om_step; + rot_samp_w = gtMathsRotationTensor(ref_round_ws, rotcomp_w); + + beamdirs = self.parameters.labgeo.beamdir * reshape(rot_samp_w, 3, []); + beamdirs = reshape(beamdirs, 3, [])'; + + Ac_part_w = beamdirs * rotcomp_z.cos; + As_part_w = beamdirs * rotcomp_z.sin; + Acc_part_w = beamdirs * rotcomp_z.const; + + Ac_part_w = Ac_part_w(:, :, ones_tot_sp_w); + As_part_w = As_part_w(:, :, ones_tot_sp_w); + Acc_part_w = Acc_part_w(:, :, ones_tot_sp_w); + end + + fprintf('\b\b: Done in %g seconds.\n', toc(c)) + + sf = cell(tot_orientations, 1); + + [o_x, o_y, o_z] = ind2sub(oris_bounds_size-1, 1:tot_orientations); + + fprintf('Computing NW shape functions: ') + c = tic(); + for ii_g = 1:tot_orientations + if (mod(ii_g, chunk_size/10) == 1) + currtime = toc(c); + num_chars = fprintf('%05d/%05d (%g s, ETA %g s)', ... + ii_g, tot_orientations, currtime, ... + toc(c) / (ii_g - 1) * tot_orientations - currtime); + end + + gr = self.lattice.gr{ii_g}; + + t = gr.allblobs.theta(ref_inds); + cos_thetas = cosd(t); + tan_thetas = tand(t); + n = gr.allblobs.eta(ref_inds); + cos_etas = cosd(-n); + sin_etas = sind(-n); + w = gr.allblobs.omega(ref_inds); + rot_w = gtMathsRotationTensor(w, rotcomp_w); + + n_1 = gr.allblobs.eta(ref_inds) + eta_step; + cos_etas_1 = cosd(-n_1); + sin_etas_1 = sind(-n_1); + rot_w_1 = gtMathsRotationTensor(w + om_step, rotcomp_w); + + % Extracting ospace boundaries for the given voxel + w_tab_int = w_tabs_int(:, o_x(ii_g):o_x(ii_g)+1, o_y(ii_g):o_y(ii_g)+1, o_z(ii_g):o_z(ii_g)+1); + w_tab_int = reshape(w_tab_int, [], 8); + + n_tab_int = n_tabs_int(:, o_x(ii_g):o_x(ii_g)+1, o_y(ii_g):o_y(ii_g)+1, o_z(ii_g):o_z(ii_g)+1); + n_tab_int = reshape(n_tab_int, [], 8); + + lims_w_proj_g_int = round([min(w_tab_int, [], 2), max(w_tab_int, [], 2)]); + lims_n_proj_g_int = round([min(n_tab_int, [], 2), max(n_tab_int, [], 2)]); + + num_ws = lims_w_proj_g_int(:, 2) - lims_w_proj_g_int(:, 1) + 1; + num_ns = lims_n_proj_g_int(:, 2) - lims_n_proj_g_int(:, 1) + 1; + + % Precomputing useful values, like sinthetas + ominds = gr.allblobs.omind(ref_inds); + ssp = ((ominds == 1) | (ominds == 2)); + ss12 = ssp - ~ssp; + + [ref_r0, ref_r_dir] = compute_rod_line(cos_thetas, ... + tan_thetas, sin_etas, cos_etas, rot_w, pl_cry, ss12); + [ref_r0_n, ref_r_dir_n] = compute_rod_line(cos_thetas, ... + tan_thetas, sin_etas_1, cos_etas_1, rot_w, pl_cry, ss12); + [ref_r0_w, ref_r_dir_w] = compute_rod_line(cos_thetas, ... + tan_thetas, sin_etas, cos_etas, rot_w_1, pl_cry, ss12); + + ref_r0_diff_n = ref_r0_n - ref_r0; + ref_r0_diff_w = ref_r0_w - ref_r0; + + ref_r_dir_diff_n = ref_r_dir_n - ref_r_dir; + ref_r_dir_diff_w = ref_r_dir_w - ref_r_dir; + + ref_inv_r_dir = 1 ./ ref_r_dir; + + % Translating everything to the origin + ref_r0 = ref_r0 - gr.R_vector(ones(numel(t), 1), :); + + if (compute_w_sfs) + num_dws = num_ws + 1; + num_dns = num_ns + 1; + + % Forming the grid in orientation space, on the plane that is + % perpendicular to the axis of rotation (z-axis in the w case), + % where to sample the sub-regions of the orientation-space voxel + % that we want to integrate. + r_vecs_w_samp = [pos_x_grid_w; pos_y_grid_w; pos_z_grid_w]; + r_vecs_w_samp = reshape(r_vecs_w_samp, 3, []); + r_vecs_w_samp = gr.R_vector(ones_tot_sp_w, :)' + r_vecs_w_samp; + + gs_w = gtMathsRod2OriMat(r_vecs_w_samp); + % Unrolling and transposing the matrices at the same time + % because we need g^-1 + gs_w = reshape(gs_w, 3, [])'; + + ys = gs_w * pl_cry; + ys = reshape(ys, 3, [], num_blobs); + ys = permute(ys, [3 1 2]); + + % Starting here to compute initial shifts aligned with the + % rounded omega, by frst doing three scalar products + Ac = sum(Ac_part_w .* ys, 2); + As = sum(As_part_w .* ys, 2); + Acc = sum(Acc_part_w .* ys, 2); + + Ac = reshape(Ac, num_blobs, tot_sampling_points_w); + As = reshape(As, num_blobs, tot_sampling_points_w); + Acc = reshape(Acc, num_blobs, tot_sampling_points_w); + + D = Ac .^ 2 + As .^ 2; + sinths = ss12 .* gr.allblobs.sintheta(ref_inds); + sinths = sinths(:, ones(tot_sampling_points_w, 1)); + + CC = Acc + sinths; + DD = D - CC .^ 2; + E = sqrt(DD); + ok = DD > 0; + + % Apparently it is inverted, compared to the omega prediction + % function. Should be investigated + ssp = ~((ominds == 1) | (ominds == 3)); + ss13 = ssp - ~ssp; + ss13 = ss13(:, ones(tot_sampling_points_w, 1)); + + % Shift along z in orientation space, to align with the images + % in proections space + dz = (-As + ss13 .* ok .* E) ./ (CC - Ac); + + ws_disps = [ ... + (lims_w_proj_g_int(:, 1) - 0.5 - ref_round_int_ws), ... + (lims_w_proj_g_int(:, 2) + 0.5 - ref_round_int_ws) ]; + ws_disps = tand(ws_disps .* om_step / 2); + end + + sf_bls_nw(1:num_blobs) = gtFwdSimBlobDefinition('sf_nw'); + + % This is the most expensive operation because the different + % sizes of the omega spread, which depends on the blob itself, + % don't allow to have vectorized operations on all the blobs at + % the same time + for ii_b = 1:num_blobs + ws = ((lims_w_proj_g_int(ii_b, 1)-shift):step:(lims_w_proj_g_int(ii_b, 2)+shift)) .* om_step; + ones_ws = ones(oversampling * num_ws(ii_b), 1); + + ns = ((lims_n_proj_g_int(ii_b, 1)-shift):step:(lims_n_proj_g_int(ii_b, 2)+shift)) .* eta_step; + ones_ns = ones(oversampling * num_ns(ii_b), 1); + % It is always in x, because this is still in lab + % coords! + + tot_vecs = oversampling * num_ws(ii_b) * oversampling * num_ns(ii_b); + ones_tvecs = ones(tot_vecs, 1); + + vars_ns = (ns - n(ii_b)) / eta_step; + vars_ns = vars_ns([1 1 1], :); + vars_ws = (ws - w(ii_b)) / om_step; + vars_ws = vars_ws([1 1 1], :); + + % The system has already been translated to the origin + rep_r0s = ref_r0(ii_b, :)'; + rep_r0s = rep_r0s(:, ones_ns, ones_ws); + + vars_r0_ns = vars_ns .* ref_r0_diff_n(ii_b * ones_ns, :)'; + vars_r0_ns = vars_r0_ns(:, :, ones_ws); + + vars_r0_ws = vars_ws .* ref_r0_diff_w(ii_b * ones_ws, :)'; + vars_r0_ws = reshape(vars_r0_ws, 3, 1, []); + vars_r0_ws = vars_r0_ws(:, ones_ns, :); + + % r0 should be defined = (h x y) / (1 + h . y) + approx_r0 = rep_r0s + vars_r0_ns + vars_r0_ws; + r0 = reshape(approx_r0, 3, [])'; + + rep_r_dirs = ref_r_dir(ii_b * ones_tvecs, :); + + vars_r_dir_ns = vars_ns .* ref_r_dir_diff_n(ii_b * ones_ns, :)'; + vars_r_dir_ns = vars_r_dir_ns(:, :, ones_ws); + vars_r_dir_ns = reshape(vars_r_dir_ns, 3, [])'; + + vars_r_dir_ws = vars_ws .* ref_r_dir_diff_w(ii_b * ones_ws, :)'; + vars_r_dir_ws = reshape(vars_r_dir_ws, 3, 1, []); + vars_r_dir_ws = vars_r_dir_ws(:, ones_ns, :); + vars_r_dir_ws = reshape(vars_r_dir_ws, 3, [])'; + + % r should be defined = r0 + t * (h + y) / (1 + h . y) + r_dir = rep_r_dirs + vars_r_dir_ns + vars_r_dir_ws; + + % Translating r0s to the closest point to the average R + % vector, on the line r + dot_r0_avgR = sum((0 - r0) .* r_dir, 2); + r0 = r0 + r_dir .* dot_r0_avgR(:, [1 1 1]); + + % Let's now find directions and limits + minus_dirs = r_dir < 0; + u_lims = half_rspace_sizes(ones_tvecs, :); + u_lims(minus_dirs) = -u_lims(minus_dirs); + l_lims = -u_lims; + + % Approximate inverse: taylor expansion to the 1st + % order + inv_r_dir = ref_inv_r_dir(ii_b * ones_tvecs, :); + inv_r_dir = (1 - (vars_r_dir_ns + vars_r_dir_ws) .* inv_r_dir) .* inv_r_dir; + + len_to_ulims = (u_lims - r0) .* inv_r_dir; + len_to_llims = (l_lims - r0) .* inv_r_dir; + + len_to_ulims = min(len_to_ulims, [], 2); + len_to_llims = max(len_to_llims, [], 2); + + n_ints = len_to_ulims - len_to_llims; + n_ints(n_ints < 0) = 0; + n_ints = reshape(n_ints, [oversampling, num_ns(ii_b), oversampling, num_ws(ii_b)]); + n_ints = sum(sum(n_ints, 1), 3); + n_ints = reshape(n_ints, [num_ns(ii_b), num_ws(ii_b)]); + n_ints = n_ints ./ sum(n_ints(:)); + + if (compute_w_sfs) + d = (ws_disps(ii_b, 1):om_step_rod:ws_disps(ii_b, 2))'; + d = d(:, ones(tot_sampling_points_w, 1)) + dz(ii_b * ones(num_dws(ii_b), 1), :); + + w_upper_limits = min(d(2:end, :), half_rspace_sizes(3)); + w_lower_limits = max(d(1:end-1, :), -half_rspace_sizes(3)); + + % integration is simple and linear: for every w and + % xy-position, we consider the corresponding segment on the + % z-direction + w_ints = w_upper_limits - w_lower_limits; + w_ints(w_ints < 0) = 0; + w_ints = renorm_coeff_w * sum(w_ints, 2)'; + + [sum(n_ints, 1), w_ints] + pause + end + + sf_bls_nw(ii_b).bbnim = lims_n_proj_g_int(ii_b, :); + sf_bls_nw(ii_b).bbwim = lims_w_proj_g_int(ii_b, :); + sf_bls_nw(ii_b).intm = n_ints; + sf_bls_nw(ii_b).bbsize = [num_ns(ii_b) num_ws(ii_b)]; + end + + sf{ii_g} = sf_bls_nw; + + if (mod(ii_g, chunk_size/10) == 1) + fprintf(repmat('\b', [1, num_chars])); + end + end + fprintf(repmat(' ', [1, num_chars])); + fprintf(repmat('\b', [1, num_chars])); + fprintf('Done in %g seconds.\n', toc(c)) + + function [r0, r_dir] = compute_rod_line(cos_thetas, tan_thetas, sin_etas, cos_etas, rot_w, pl_cry, ss12) + y = repmat(cos_thetas, [1 3]) .* [-tan_thetas, -sin_etas, cos_etas]; + y = permute(y, [2 3 1]); + y = y(:, [1 1 1], :); + y = reshape(y, 3, []); + + y_w = y .* reshape(rot_w, 3, []); + y_w = reshape(sum(y_w, 1), 3, [])'; + + h_12 = ss12(:, [1 1 1]) .* pl_cry'; + + renorms = 1 + sum(y_w .* h_12, 2); + renorms = renorms(:, [1 1 1]); + + % r0 is defined = (h x y) / (1 + h . y) + r0 = gtMathsCross(h_12, y_w) ./ renorms; + + % r is defined = r0 + t * (h + y) / (1 + h . y) + r_dir = (h_12 + y_w) ./ renorms; + r_dir = gtMathsNormalizeVectorsList(r_dir); + end + end + function resolution = estimate_maximum_resolution(self) sel = self.ondet(self.included(self.selected));