diff --git a/zUtil_Maths/gtMathsIsPointInPolyhedron.m b/zUtil_Maths/gtMathsIsPointInPolyhedron.m
index a15da256f85d6ba5d533541913ffc18bb178238f..68622a1d6ec3c48159d44fe983377f6a06fb1212 100755
--- a/zUtil_Maths/gtMathsIsPointInPolyhedron.m
+++ b/zUtil_Maths/gtMathsIsPointInPolyhedron.m
@@ -1,16 +1,18 @@
+function ok = gtMathsIsPointInPolyhedron(p, faces)
+% GTMATHSISPOINTINPOLYHEDRON Tells if the given point is inside the defined 3D
+%   polyhedron.
 %
-% FUNCTION  ok = gtMathsIsPointInPolyhedron(p,faces)
+%   ok = gtMathsIsPointInPolyhedron(p, faces)
 %
-% Tells if the given point is inside the defined 3D polyhedron. 
-%
-% INPUT:  p(1x3)     - [X,Y,Z] coordinates of the point 
-%         faces(nx6) - coordinates of the facet planes of the polyhedron
-%                      [p0x p0y p0z pnormx pnormy pnormz]
-%                      pnorm vectors point out of the volume
-%
-% OUTPUT: ok - true if the point is inside the polyhedron
+%   INPUT:  p(mx3)     - [X,Y,Z] coordinates of the point
+%           faces(nx6) - coordinates of the facet planes of the polyhedron
+%                        [p0x p0y p0z pnormx pnormy pnormz]
+%                        pnorm vectors point out of the volume
 %
+%   OUTPUT: ok - true if the point is inside the polyhedron
+
+    aa = (p(ones(size(faces, 1), 1), :) - faces(:, 1:3)) .* faces(:, 4:6);
 
-function ok = gtMathsIsPointInPolyhedron(p,faces)
+    ok = all(sum(aa, 2) <= 1e-12);
 
-ok = all(sum((repmat(p,size(faces,1),1)-faces(:,1:3)).*faces(:,4:6),2) <= 1e-12);
+end