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Summary

This report shows the derivation of the kinematic equations for a positioning table which is actuated by

three vertical jacks.
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1 Preface

At several beamline-end-stations a positioning table as shown in Figure 1 is used to put the sample into the

beam. Since the position and orientation of the sample with respect to the beam are of high interest it is

necessary to know the kinematic behavior of the sample with respect to the three vertical actuators. This is

what the following report deals with.

Figure 1: COD model of a positioning table
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2 Modeling of the system

The modeling of the system has been done as shown in Figure 2. The world frame {w} gives the orientation
of the beam and is used to de�ne the positions (a, b, c) of the actuators. On the other hand the sample frame

{s} is used to give the position and orientation of the sample with respect to the three actuators.

For computational issues there will be also a third coordinate frame introduced in Figure 5 which has

the three coordinates e1, e2 and e3 instead of x, y and z. It is used to simplify the computation and it is

de�ned such that the e1 coordinate shows always in the free direction of the actuator which can either move

in the x or in the y direction.
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Figure 2: Kinematic model of the positioning table
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3 Inverse kinematic

The inverse kinematic is the computation of the actuator positions according to a desired position of the

sample. Since there are only three actuators used for the positioning of the sample table, only three dof

(degrees of freedom) can be adjusted arbitrary. These dof are the position in z direction and the rotations

about the x and the y axis. The other three dof are constrained by the geometry of the setup. For the

inverse kinematic it is hence, necessary to de�ne �rst the desired values to be z, rx and ry. This gives the

following rotation matrix for the sample frame

R(rx, ry) =

 cos(ry) 0 sin(ry)

0 1 0

− sin(ry) 0 cos(ry)


1 0 0

0 cos(rx) − sin(rx)

0 sin(rx) cos(rx)

 =

 cry srysrx srycrx

0 crx −srx
−sry crysrx crycrx

 (1)

In the last matrix the acronyms sx and cx have been used for sin(x) and cos(x). Given this rotation matrix

it is now easy to compute the needed positions of the actuators to get the table into the desired orientation.

Since one of the actuators is �xed in the x-y plane this actor can be used for de�ning a kinematic chain, see

Figure 3.

This kinematic chain can be written with homogeneous transformation matrices as[
I3 −L1.s

0T 1

][
R(rx, ry) p

0T 1

]
=

[
R(rx, ry) 0

0T 1

][
I3 −L1.s

0T 1

]
(2)

where 0 = [0 0 0]
T
and I3 is the identity matrix of order 3. But since the motion of the sample frame is

not completely free, a constrain equation can be found, which de�nes the parasitic rotation about the z-axis.

Therefore a kinematic chain containing the actuator which is �xed and the one which has only one dof in the

x-y plane. This chain can be seen in Figure 4 and the equation (in homogeneous transformation matrices)

boils down to [
I3 pbb′

0T 1

]
=

[
I3 pba

0T 1

][
R(rx, ry) 0

0T 1

][
R(rz) 0

0T 1

][
I3 pab′

0T 1

]
(3)

Now it has to be distinguished if the second actuator can move in x or in y direction. According to this dof

either the �rst or the second element in the vector pbb′ on the left hand side of equation (3) has to be equal

to 0, and hence the angle rz is de�ned by this.

With the known parasitic rotation about the z axis the orientation and of the sample is completely
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Figure 3: Kinematic chain for the actuator �xed in the x-y plane
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Figure 4: Kinematic chain for the constrained motion

de�ned. So equation (3) can be used to �nd the needed position pbb′ of the actor b. The same kinematic

chain can now be de�ned for the third actuator in order to �nd the third position pcc′ .[
I3 pcc′

0T 1

]
=

[
I3 pca

0T 1

][
R(rx, ry) 0

0T 1

][
R(rz) 0

0T 1

][
I3 pac′

0T 1

]
(4)

From the both vectors pbb′ and pcc′ the last element (the one in z direction) gives the actuation value of

the actor to reach the desired orientation. As last parameter now the height of the sample frame is still

adjustable, so that the desired value is going to be reached. Therefore it is the easiest to rewrite equation

(2), so that the vector p can be computed[
R(rx, ry) p

0T 1

]
=

[
I3 L1.s

0T 1

][
R(rx, ry) 0

0T 1

][
I3 −L1.s

0T 1

]
. (5)

The di�erence from the so calculated z position (third element of p) and the desired z position now has to

be added to the values found by the equations for the orientation.

∆z = zin − p(3) (6)

za = ∆z (7)

zb = ∆z + pbb′(3) (8)

zc = ∆z + pcc′(3) (9)

Now equations (7) to (9) give the needed actuation positions.

4 Forward kinematics

In order to compute the position and orientation of the sample by a given set of actuator positions the so

called forward kinematic is needed. Therefore it is �rst needed to compute the positions of the three jacks

in the x-y plain. This can be done by using the constrains of the euclidean distance of the three jacks, as

shown in Figure 5. This give the following three equations.

‖pab‖2
!
= ‖pab′‖2 = ‖pab + pbb′‖2 (10)

‖pac‖2
!
= ‖pac′‖2 = ‖pac + pcc′‖2 (11)

‖pbc‖2
!
= ‖pb′c′‖2 = ‖ − pbb′ + pbc + pcc′‖2 (12)

This gives three equations for three variables (x and y coordinate of pcc′ and x or y coordinate of pbb′). Since

the equations are nonlinear, an analytic solution is quite complex but the Newton method can be used for

�nding the solution numerically.
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Figure 5: Vector de�nitions for the forward kinematics

After pbb′ and pcc′ are found, we can de�ne

pab′ = pab + pbb′ (13)

pac′ = pac + pcc′ (14)

pb′c′ = −pbb′ + pbc + pcc′ (15)

and with the rotation matrix R(rx, ry, rz) follows

pab′ = R(rx, ry, rz)pab (16)

pac′ = R(rx, ry, rz)pac (17)

pb′c′ = R(rx, ry, rz)pbc (18)

R(rx, ry, rz) = R(rx, ry)R(rz) =

crycrz + srxsrysrz srysrxcrz − crysrz srycrx

crxsrz crxcrz −srx
crysrxsrz − crzsry srysrz + crycrzsrx crycrx

 =

r11 r12 r13

r21 r22 r23

r31 r32 r33


(19)

The equations (16) to (18) can now be rearranged to �nd the rotation matrix

pab′pac′

pb′c′

 =

pab(1)I3 pab(2)I3 pab(3)I3

pac(1)I3 pac(2)I3 pac(3)I3

pbc(1)I3 pbc(2)I3 pbc(3)I3





r11

r21

r31

r12

r22

r32

r13

r23

r33


(20)

Inversion of equation (20) gives the entries of the Rotation matrix. From these entries the rotation angels
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can be computed as followed:

r21
r22

=
crxsrz
crxcrz

=
srz
crz

= tan(rz) ⇒ rz = atan

(
r21
r22

)
(21)

r22 = crxcrz ⇒ rx = acos

(
r22

cos(rz)

)
(22)[

r11

r31

]
=

[
crz srxsrz

srxsrz −crz

][
cry

sry

]
⇒

[
cry

sry

]
=

[
crz srxsrz

srxsrz −crz

]−1 [
r11

r31

]

ry = atan

(
sry
cry

)
(23)

The elements r13, r23 and r33 have not been used for the computation of rx, ry and rz, since the third entry

of the vectors pab, pac and pbc can be 0 and in this case equation (20) becomes

[
pab′

pac′

]
=

[
pab(1)I3 pab(2)I3

pac(1)I3 pac(2)I3

]


r11

r21

r31

r12

r22

r32


. (24)
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